Metamath Proof Explorer


Theorem mapdpglem22

Description: Lemma for mapdpg . Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem12.yn φYQ
mapdpglem17.ep E=invrAg·˙z
Assertion mapdpglem22 φMNX-˙Y=JGRE

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem12.yn φYQ
30 mapdpglem17.ep E=invrAg·˙z
31 1 7 8 lcdlvec φCLVec
32 1 3 8 dvhlvec φULVec
33 15 lvecdrng ULVecADivRing
34 32 33 syl φADivRing
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 mapdpglem11 φg0˙
36 eqid invrA=invrA
37 16 24 36 drnginvrcl ADivRinggBg0˙invrAgB
38 34 25 35 37 syl3anc φinvrAgB
39 eqid ScalarC=ScalarC
40 eqid BaseScalarC=BaseScalarC
41 1 3 15 16 7 39 40 8 lcdsbase φBaseScalarC=B
42 38 41 eleqtrrd φinvrAgBaseScalarC
43 16 24 36 drnginvrn0 ADivRinggBg0˙invrAg0˙
44 34 25 35 43 syl3anc φinvrAg0˙
45 eqid 0ScalarC=0ScalarC
46 1 3 15 24 7 39 45 8 lcd0 φ0ScalarC=0˙
47 44 46 neeqtrrd φinvrAg0ScalarC
48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mapdpglem2a φtF
49 13 39 17 40 45 12 lspsnvs CLVecinvrAgBaseScalarCinvrAg0ScalarCtFJinvrAg·˙t=Jt
50 31 42 47 48 49 syl121anc φJinvrAg·˙t=Jt
51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem21 φinvrAg·˙t=GRE
52 51 sneqd φinvrAg·˙t=GRE
53 52 fveq2d φJinvrAg·˙t=JGRE
54 23 50 53 3eqtr2d φMNX-˙Y=JGRE