| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpglem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdpglem.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdpglem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdpglem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
mapdpglem.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 6 |
|
mapdpglem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdpglem.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapdpglem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
mapdpglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
mapdpglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 11 |
|
mapdpglem1.p |
⊢ ⊕ = ( LSSum ‘ 𝐶 ) |
| 12 |
|
mapdpglem2.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 13 |
|
mapdpglem3.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
| 14 |
|
mapdpglem3.te |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 15 |
|
mapdpglem3.a |
⊢ 𝐴 = ( Scalar ‘ 𝑈 ) |
| 16 |
|
mapdpglem3.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 17 |
|
mapdpglem3.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 18 |
|
mapdpglem3.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 19 |
|
mapdpglem3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 20 |
|
mapdpglem3.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
| 21 |
|
mapdpglem4.q |
⊢ 𝑄 = ( 0g ‘ 𝑈 ) |
| 22 |
|
mapdpglem.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 23 |
|
mapdpglem4.jt |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |
| 24 |
|
mapdpglem4.z |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 25 |
|
mapdpglem4.g4 |
⊢ ( 𝜑 → 𝑔 ∈ 𝐵 ) |
| 26 |
|
mapdpglem4.z4 |
⊢ ( 𝜑 → 𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 27 |
|
mapdpglem4.t4 |
⊢ ( 𝜑 → 𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ) |
| 28 |
|
mapdpglem4.xn |
⊢ ( 𝜑 → 𝑋 ≠ 𝑄 ) |
| 29 |
|
mapdpglem12.yn |
⊢ ( 𝜑 → 𝑌 ≠ 𝑄 ) |
| 30 |
|
mapdpglem17.ep |
⊢ 𝐸 = ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) |
| 31 |
1 7 8
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
| 32 |
1 3 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 33 |
15
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝐴 ∈ DivRing ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ DivRing ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
mapdpglem11 |
⊢ ( 𝜑 → 𝑔 ≠ 0 ) |
| 36 |
|
eqid |
⊢ ( invr ‘ 𝐴 ) = ( invr ‘ 𝐴 ) |
| 37 |
16 24 36
|
drnginvrcl |
⊢ ( ( 𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 38 |
34 25 35 37
|
syl3anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 39 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 40 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 41 |
1 3 15 16 7 39 40 8
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 ) |
| 42 |
38 41
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 43 |
16 24 36
|
drnginvrn0 |
⊢ ( ( 𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ≠ 0 ) |
| 44 |
34 25 35 43
|
syl3anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ≠ 0 ) |
| 45 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) |
| 46 |
1 3 15 24 7 39 45 8
|
lcd0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = 0 ) |
| 47 |
44 46
|
neeqtrrd |
⊢ ( 𝜑 → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
mapdpglem2a |
⊢ ( 𝜑 → 𝑡 ∈ 𝐹 ) |
| 49 |
13 39 17 40 45 12
|
lspsnvs |
⊢ ( ( 𝐶 ∈ LVec ∧ ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∧ ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ≠ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) ) ∧ 𝑡 ∈ 𝐹 ) → ( 𝐽 ‘ { ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) } ) = ( 𝐽 ‘ { 𝑡 } ) ) |
| 50 |
31 42 47 48 49
|
syl121anc |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) } ) = ( 𝐽 ‘ { 𝑡 } ) ) |
| 51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
mapdpglem21 |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) = ( 𝐺 𝑅 𝐸 ) ) |
| 52 |
51
|
sneqd |
⊢ ( 𝜑 → { ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) } = { ( 𝐺 𝑅 𝐸 ) } ) |
| 53 |
52
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) |
| 54 |
23 50 53
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) |