Metamath Proof Explorer


Theorem mapdpglem21

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h
|- H = ( LHyp ` K )
mapdpglem.m
|- M = ( ( mapd ` K ) ` W )
mapdpglem.u
|- U = ( ( DVecH ` K ) ` W )
mapdpglem.v
|- V = ( Base ` U )
mapdpglem.s
|- .- = ( -g ` U )
mapdpglem.n
|- N = ( LSpan ` U )
mapdpglem.c
|- C = ( ( LCDual ` K ) ` W )
mapdpglem.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdpglem.x
|- ( ph -> X e. V )
mapdpglem.y
|- ( ph -> Y e. V )
mapdpglem1.p
|- .(+) = ( LSSum ` C )
mapdpglem2.j
|- J = ( LSpan ` C )
mapdpglem3.f
|- F = ( Base ` C )
mapdpglem3.te
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) )
mapdpglem3.a
|- A = ( Scalar ` U )
mapdpglem3.b
|- B = ( Base ` A )
mapdpglem3.t
|- .x. = ( .s ` C )
mapdpglem3.r
|- R = ( -g ` C )
mapdpglem3.g
|- ( ph -> G e. F )
mapdpglem3.e
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
mapdpglem4.q
|- Q = ( 0g ` U )
mapdpglem.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
mapdpglem4.jt
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) )
mapdpglem4.z
|- .0. = ( 0g ` A )
mapdpglem4.g4
|- ( ph -> g e. B )
mapdpglem4.z4
|- ( ph -> z e. ( M ` ( N ` { Y } ) ) )
mapdpglem4.t4
|- ( ph -> t = ( ( g .x. G ) R z ) )
mapdpglem4.xn
|- ( ph -> X =/= Q )
mapdpglem12.yn
|- ( ph -> Y =/= Q )
mapdpglem17.ep
|- E = ( ( ( invr ` A ) ` g ) .x. z )
Assertion mapdpglem21
|- ( ph -> ( ( ( invr ` A ) ` g ) .x. t ) = ( G R E ) )

Proof

Step Hyp Ref Expression
1 mapdpglem.h
 |-  H = ( LHyp ` K )
2 mapdpglem.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdpglem.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdpglem.v
 |-  V = ( Base ` U )
5 mapdpglem.s
 |-  .- = ( -g ` U )
6 mapdpglem.n
 |-  N = ( LSpan ` U )
7 mapdpglem.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdpglem.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 mapdpglem.x
 |-  ( ph -> X e. V )
10 mapdpglem.y
 |-  ( ph -> Y e. V )
11 mapdpglem1.p
 |-  .(+) = ( LSSum ` C )
12 mapdpglem2.j
 |-  J = ( LSpan ` C )
13 mapdpglem3.f
 |-  F = ( Base ` C )
14 mapdpglem3.te
 |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) )
15 mapdpglem3.a
 |-  A = ( Scalar ` U )
16 mapdpglem3.b
 |-  B = ( Base ` A )
17 mapdpglem3.t
 |-  .x. = ( .s ` C )
18 mapdpglem3.r
 |-  R = ( -g ` C )
19 mapdpglem3.g
 |-  ( ph -> G e. F )
20 mapdpglem3.e
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
21 mapdpglem4.q
 |-  Q = ( 0g ` U )
22 mapdpglem.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
23 mapdpglem4.jt
 |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) )
24 mapdpglem4.z
 |-  .0. = ( 0g ` A )
25 mapdpglem4.g4
 |-  ( ph -> g e. B )
26 mapdpglem4.z4
 |-  ( ph -> z e. ( M ` ( N ` { Y } ) ) )
27 mapdpglem4.t4
 |-  ( ph -> t = ( ( g .x. G ) R z ) )
28 mapdpglem4.xn
 |-  ( ph -> X =/= Q )
29 mapdpglem12.yn
 |-  ( ph -> Y =/= Q )
30 mapdpglem17.ep
 |-  E = ( ( ( invr ` A ) ` g ) .x. z )
31 27 oveq2d
 |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. t ) = ( ( ( invr ` A ) ` g ) .x. ( ( g .x. G ) R z ) ) )
32 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
33 eqid
 |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) )
34 1 7 8 lcdlmod
 |-  ( ph -> C e. LMod )
35 1 3 8 dvhlvec
 |-  ( ph -> U e. LVec )
36 15 lvecdrng
 |-  ( U e. LVec -> A e. DivRing )
37 35 36 syl
 |-  ( ph -> A e. DivRing )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 mapdpglem11
 |-  ( ph -> g =/= .0. )
39 eqid
 |-  ( invr ` A ) = ( invr ` A )
40 16 24 39 drnginvrcl
 |-  ( ( A e. DivRing /\ g e. B /\ g =/= .0. ) -> ( ( invr ` A ) ` g ) e. B )
41 37 25 38 40 syl3anc
 |-  ( ph -> ( ( invr ` A ) ` g ) e. B )
42 1 3 15 16 7 32 33 8 lcdsbase
 |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B )
43 41 42 eleqtrrd
 |-  ( ph -> ( ( invr ` A ) ` g ) e. ( Base ` ( Scalar ` C ) ) )
44 1 3 15 16 7 13 17 8 25 19 lcdvscl
 |-  ( ph -> ( g .x. G ) e. F )
45 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
46 eqid
 |-  ( LSubSp ` C ) = ( LSubSp ` C )
47 1 3 8 dvhlmod
 |-  ( ph -> U e. LMod )
48 4 45 6 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
49 47 10 48 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
50 1 2 3 45 7 46 8 49 mapdcl2
 |-  ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) )
51 13 46 lssss
 |-  ( ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) -> ( M ` ( N ` { Y } ) ) C_ F )
52 50 51 syl
 |-  ( ph -> ( M ` ( N ` { Y } ) ) C_ F )
53 52 26 sseldd
 |-  ( ph -> z e. F )
54 13 17 32 33 18 34 43 44 53 lmodsubdi
 |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. ( ( g .x. G ) R z ) ) = ( ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) R ( ( ( invr ` A ) ` g ) .x. z ) ) )
55 eqid
 |-  ( .r ` A ) = ( .r ` A )
56 eqid
 |-  ( 1r ` A ) = ( 1r ` A )
57 16 24 55 56 39 drnginvrr
 |-  ( ( A e. DivRing /\ g e. B /\ g =/= .0. ) -> ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) = ( 1r ` A ) )
58 37 25 38 57 syl3anc
 |-  ( ph -> ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) = ( 1r ` A ) )
59 eqid
 |-  ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) )
60 1 3 15 56 7 32 59 8 lcd1
 |-  ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` A ) )
61 58 60 eqtr4d
 |-  ( ph -> ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) = ( 1r ` ( Scalar ` C ) ) )
62 61 oveq1d
 |-  ( ph -> ( ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) .x. G ) = ( ( 1r ` ( Scalar ` C ) ) .x. G ) )
63 1 3 15 16 55 7 13 17 8 41 25 19 lcdvsass
 |-  ( ph -> ( ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) .x. G ) = ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) )
64 13 32 17 59 lmodvs1
 |-  ( ( C e. LMod /\ G e. F ) -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G )
65 34 19 64 syl2anc
 |-  ( ph -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G )
66 62 63 65 3eqtr3d
 |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) = G )
67 66 oveq1d
 |-  ( ph -> ( ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) R ( ( ( invr ` A ) ` g ) .x. z ) ) = ( G R ( ( ( invr ` A ) ` g ) .x. z ) ) )
68 30 oveq2i
 |-  ( G R E ) = ( G R ( ( ( invr ` A ) ` g ) .x. z ) )
69 67 68 eqtr4di
 |-  ( ph -> ( ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) R ( ( ( invr ` A ) ` g ) .x. z ) ) = ( G R E ) )
70 31 54 69 3eqtrd
 |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. t ) = ( G R E ) )