| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpglem.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpglem.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpglem.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpglem.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpglem.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdpglem.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdpglem.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | mapdpglem.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | mapdpglem.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | mapdpglem1.p |  |-  .(+) = ( LSSum ` C ) | 
						
							| 12 |  | mapdpglem2.j |  |-  J = ( LSpan ` C ) | 
						
							| 13 |  | mapdpglem3.f |  |-  F = ( Base ` C ) | 
						
							| 14 |  | mapdpglem3.te |  |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a |  |-  A = ( Scalar ` U ) | 
						
							| 16 |  | mapdpglem3.b |  |-  B = ( Base ` A ) | 
						
							| 17 |  | mapdpglem3.t |  |-  .x. = ( .s ` C ) | 
						
							| 18 |  | mapdpglem3.r |  |-  R = ( -g ` C ) | 
						
							| 19 |  | mapdpglem3.g |  |-  ( ph -> G e. F ) | 
						
							| 20 |  | mapdpglem3.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 21 |  | mapdpglem4.q |  |-  Q = ( 0g ` U ) | 
						
							| 22 |  | mapdpglem.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 23 |  | mapdpglem4.jt |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) | 
						
							| 24 |  | mapdpglem4.z |  |-  .0. = ( 0g ` A ) | 
						
							| 25 |  | mapdpglem4.g4 |  |-  ( ph -> g e. B ) | 
						
							| 26 |  | mapdpglem4.z4 |  |-  ( ph -> z e. ( M ` ( N ` { Y } ) ) ) | 
						
							| 27 |  | mapdpglem4.t4 |  |-  ( ph -> t = ( ( g .x. G ) R z ) ) | 
						
							| 28 |  | mapdpglem4.xn |  |-  ( ph -> X =/= Q ) | 
						
							| 29 |  | mapdpglem12.yn |  |-  ( ph -> Y =/= Q ) | 
						
							| 30 |  | mapdpglem17.ep |  |-  E = ( ( ( invr ` A ) ` g ) .x. z ) | 
						
							| 31 | 27 | oveq2d |  |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. t ) = ( ( ( invr ` A ) ` g ) .x. ( ( g .x. G ) R z ) ) ) | 
						
							| 32 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 33 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 34 | 1 7 8 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 35 | 1 3 8 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 36 | 15 | lvecdrng |  |-  ( U e. LVec -> A e. DivRing ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> A e. DivRing ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | mapdpglem11 |  |-  ( ph -> g =/= .0. ) | 
						
							| 39 |  | eqid |  |-  ( invr ` A ) = ( invr ` A ) | 
						
							| 40 | 16 24 39 | drnginvrcl |  |-  ( ( A e. DivRing /\ g e. B /\ g =/= .0. ) -> ( ( invr ` A ) ` g ) e. B ) | 
						
							| 41 | 37 25 38 40 | syl3anc |  |-  ( ph -> ( ( invr ` A ) ` g ) e. B ) | 
						
							| 42 | 1 3 15 16 7 32 33 8 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B ) | 
						
							| 43 | 41 42 | eleqtrrd |  |-  ( ph -> ( ( invr ` A ) ` g ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 44 | 1 3 15 16 7 13 17 8 25 19 | lcdvscl |  |-  ( ph -> ( g .x. G ) e. F ) | 
						
							| 45 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 46 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 47 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 48 | 4 45 6 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 49 | 47 10 48 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 50 | 1 2 3 45 7 46 8 49 | mapdcl2 |  |-  ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) | 
						
							| 51 | 13 46 | lssss |  |-  ( ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) -> ( M ` ( N ` { Y } ) ) C_ F ) | 
						
							| 52 | 50 51 | syl |  |-  ( ph -> ( M ` ( N ` { Y } ) ) C_ F ) | 
						
							| 53 | 52 26 | sseldd |  |-  ( ph -> z e. F ) | 
						
							| 54 | 13 17 32 33 18 34 43 44 53 | lmodsubdi |  |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. ( ( g .x. G ) R z ) ) = ( ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) R ( ( ( invr ` A ) ` g ) .x. z ) ) ) | 
						
							| 55 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 56 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 57 | 16 24 55 56 39 | drnginvrr |  |-  ( ( A e. DivRing /\ g e. B /\ g =/= .0. ) -> ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) = ( 1r ` A ) ) | 
						
							| 58 | 37 25 38 57 | syl3anc |  |-  ( ph -> ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) = ( 1r ` A ) ) | 
						
							| 59 |  | eqid |  |-  ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) | 
						
							| 60 | 1 3 15 56 7 32 59 8 | lcd1 |  |-  ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` A ) ) | 
						
							| 61 | 58 60 | eqtr4d |  |-  ( ph -> ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) = ( 1r ` ( Scalar ` C ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( ph -> ( ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) .x. G ) = ( ( 1r ` ( Scalar ` C ) ) .x. G ) ) | 
						
							| 63 | 1 3 15 16 55 7 13 17 8 41 25 19 | lcdvsass |  |-  ( ph -> ( ( g ( .r ` A ) ( ( invr ` A ) ` g ) ) .x. G ) = ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) ) | 
						
							| 64 | 13 32 17 59 | lmodvs1 |  |-  ( ( C e. LMod /\ G e. F ) -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G ) | 
						
							| 65 | 34 19 64 | syl2anc |  |-  ( ph -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G ) | 
						
							| 66 | 62 63 65 | 3eqtr3d |  |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) = G ) | 
						
							| 67 | 66 | oveq1d |  |-  ( ph -> ( ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) R ( ( ( invr ` A ) ` g ) .x. z ) ) = ( G R ( ( ( invr ` A ) ` g ) .x. z ) ) ) | 
						
							| 68 | 30 | oveq2i |  |-  ( G R E ) = ( G R ( ( ( invr ` A ) ` g ) .x. z ) ) | 
						
							| 69 | 67 68 | eqtr4di |  |-  ( ph -> ( ( ( ( invr ` A ) ` g ) .x. ( g .x. G ) ) R ( ( ( invr ` A ) ` g ) .x. z ) ) = ( G R E ) ) | 
						
							| 70 | 31 54 69 | 3eqtrd |  |-  ( ph -> ( ( ( invr ` A ) ` g ) .x. t ) = ( G R E ) ) |