| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpglem.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdpglem.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdpglem.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdpglem.v |
|- V = ( Base ` U ) |
| 5 |
|
mapdpglem.s |
|- .- = ( -g ` U ) |
| 6 |
|
mapdpglem.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdpglem.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdpglem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
mapdpglem.x |
|- ( ph -> X e. V ) |
| 10 |
|
mapdpglem.y |
|- ( ph -> Y e. V ) |
| 11 |
|
mapdpglem1.p |
|- .(+) = ( LSSum ` C ) |
| 12 |
|
mapdpglem2.j |
|- J = ( LSpan ` C ) |
| 13 |
|
mapdpglem3.f |
|- F = ( Base ` C ) |
| 14 |
|
mapdpglem3.te |
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
| 15 |
|
mapdpglem3.a |
|- A = ( Scalar ` U ) |
| 16 |
|
mapdpglem3.b |
|- B = ( Base ` A ) |
| 17 |
|
mapdpglem3.t |
|- .x. = ( .s ` C ) |
| 18 |
|
mapdpglem3.r |
|- R = ( -g ` C ) |
| 19 |
|
mapdpglem3.g |
|- ( ph -> G e. F ) |
| 20 |
|
mapdpglem3.e |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
| 21 |
|
mapdpglem4.q |
|- Q = ( 0g ` U ) |
| 22 |
|
mapdpglem.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 23 |
|
mapdpglem4.jt |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) |
| 24 |
|
mapdpglem4.z |
|- .0. = ( 0g ` A ) |
| 25 |
|
mapdpglem4.g4 |
|- ( ph -> g e. B ) |
| 26 |
|
mapdpglem4.z4 |
|- ( ph -> z e. ( M ` ( N ` { Y } ) ) ) |
| 27 |
|
mapdpglem4.t4 |
|- ( ph -> t = ( ( g .x. G ) R z ) ) |
| 28 |
|
mapdpglem4.xn |
|- ( ph -> X =/= Q ) |
| 29 |
8
|
adantr |
|- ( ( ph /\ g = .0. ) -> ( K e. HL /\ W e. H ) ) |
| 30 |
9
|
adantr |
|- ( ( ph /\ g = .0. ) -> X e. V ) |
| 31 |
10
|
adantr |
|- ( ( ph /\ g = .0. ) -> Y e. V ) |
| 32 |
14
|
adantr |
|- ( ( ph /\ g = .0. ) -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
| 33 |
19
|
adantr |
|- ( ( ph /\ g = .0. ) -> G e. F ) |
| 34 |
20
|
adantr |
|- ( ( ph /\ g = .0. ) -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
| 35 |
22
|
adantr |
|- ( ( ph /\ g = .0. ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 36 |
23
|
adantr |
|- ( ( ph /\ g = .0. ) -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) |
| 37 |
25
|
adantr |
|- ( ( ph /\ g = .0. ) -> g e. B ) |
| 38 |
26
|
adantr |
|- ( ( ph /\ g = .0. ) -> z e. ( M ` ( N ` { Y } ) ) ) |
| 39 |
27
|
adantr |
|- ( ( ph /\ g = .0. ) -> t = ( ( g .x. G ) R z ) ) |
| 40 |
28
|
adantr |
|- ( ( ph /\ g = .0. ) -> X =/= Q ) |
| 41 |
|
simpr |
|- ( ( ph /\ g = .0. ) -> g = .0. ) |
| 42 |
1 2 3 4 5 6 7 29 30 31 11 12 13 32 15 16 17 18 33 34 21 35 36 24 37 38 39 40 41
|
mapdpglem10 |
|- ( ( ph /\ g = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 43 |
42
|
ex |
|- ( ph -> ( g = .0. -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 44 |
43
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> g =/= .0. ) ) |
| 45 |
22 44
|
mpd |
|- ( ph -> g =/= .0. ) |