Description: Lemma for mapdpg . Baer p. 45, line 6: "Hence Fx=Fy, an impossibility." (Contributed by NM, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpglem.h | |- H = ( LHyp ` K ) |
|
mapdpglem.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdpglem.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdpglem.v | |- V = ( Base ` U ) |
||
mapdpglem.s | |- .- = ( -g ` U ) |
||
mapdpglem.n | |- N = ( LSpan ` U ) |
||
mapdpglem.c | |- C = ( ( LCDual ` K ) ` W ) |
||
mapdpglem.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdpglem.x | |- ( ph -> X e. V ) |
||
mapdpglem.y | |- ( ph -> Y e. V ) |
||
mapdpglem1.p | |- .(+) = ( LSSum ` C ) |
||
mapdpglem2.j | |- J = ( LSpan ` C ) |
||
mapdpglem3.f | |- F = ( Base ` C ) |
||
mapdpglem3.te | |- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
||
mapdpglem3.a | |- A = ( Scalar ` U ) |
||
mapdpglem3.b | |- B = ( Base ` A ) |
||
mapdpglem3.t | |- .x. = ( .s ` C ) |
||
mapdpglem3.r | |- R = ( -g ` C ) |
||
mapdpglem3.g | |- ( ph -> G e. F ) |
||
mapdpglem3.e | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
||
mapdpglem4.q | |- Q = ( 0g ` U ) |
||
mapdpglem.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
mapdpglem4.jt | |- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) |
||
mapdpglem4.z | |- .0. = ( 0g ` A ) |
||
mapdpglem4.g4 | |- ( ph -> g e. B ) |
||
mapdpglem4.z4 | |- ( ph -> z e. ( M ` ( N ` { Y } ) ) ) |
||
mapdpglem4.t4 | |- ( ph -> t = ( ( g .x. G ) R z ) ) |
||
mapdpglem4.xn | |- ( ph -> X =/= Q ) |
||
mapdpglem4.g0 | |- ( ph -> g = .0. ) |
||
Assertion | mapdpglem10 | |- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | |- H = ( LHyp ` K ) |
|
2 | mapdpglem.m | |- M = ( ( mapd ` K ) ` W ) |
|
3 | mapdpglem.u | |- U = ( ( DVecH ` K ) ` W ) |
|
4 | mapdpglem.v | |- V = ( Base ` U ) |
|
5 | mapdpglem.s | |- .- = ( -g ` U ) |
|
6 | mapdpglem.n | |- N = ( LSpan ` U ) |
|
7 | mapdpglem.c | |- C = ( ( LCDual ` K ) ` W ) |
|
8 | mapdpglem.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
9 | mapdpglem.x | |- ( ph -> X e. V ) |
|
10 | mapdpglem.y | |- ( ph -> Y e. V ) |
|
11 | mapdpglem1.p | |- .(+) = ( LSSum ` C ) |
|
12 | mapdpglem2.j | |- J = ( LSpan ` C ) |
|
13 | mapdpglem3.f | |- F = ( Base ` C ) |
|
14 | mapdpglem3.te | |- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
|
15 | mapdpglem3.a | |- A = ( Scalar ` U ) |
|
16 | mapdpglem3.b | |- B = ( Base ` A ) |
|
17 | mapdpglem3.t | |- .x. = ( .s ` C ) |
|
18 | mapdpglem3.r | |- R = ( -g ` C ) |
|
19 | mapdpglem3.g | |- ( ph -> G e. F ) |
|
20 | mapdpglem3.e | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
|
21 | mapdpglem4.q | |- Q = ( 0g ` U ) |
|
22 | mapdpglem.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
23 | mapdpglem4.jt | |- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) |
|
24 | mapdpglem4.z | |- .0. = ( 0g ` A ) |
|
25 | mapdpglem4.g4 | |- ( ph -> g e. B ) |
|
26 | mapdpglem4.z4 | |- ( ph -> z e. ( M ` ( N ` { Y } ) ) ) |
|
27 | mapdpglem4.t4 | |- ( ph -> t = ( ( g .x. G ) R z ) ) |
|
28 | mapdpglem4.xn | |- ( ph -> X =/= Q ) |
|
29 | mapdpglem4.g0 | |- ( ph -> g = .0. ) |
|
30 | 1 3 8 | dvhlvec | |- ( ph -> U e. LVec ) |
31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | mapdpglem9 | |- ( ph -> X e. ( N ` { Y } ) ) |
32 | 4 21 6 30 10 31 28 | lspsneleq | |- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |