Metamath Proof Explorer


Theorem mapdpglem23

Description: Lemma for mapdpg . Baer p. 45, line 10: "and so y' meets all our requirements." Our h is Baer's y'. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h
|- H = ( LHyp ` K )
mapdpglem.m
|- M = ( ( mapd ` K ) ` W )
mapdpglem.u
|- U = ( ( DVecH ` K ) ` W )
mapdpglem.v
|- V = ( Base ` U )
mapdpglem.s
|- .- = ( -g ` U )
mapdpglem.n
|- N = ( LSpan ` U )
mapdpglem.c
|- C = ( ( LCDual ` K ) ` W )
mapdpglem.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdpglem.x
|- ( ph -> X e. V )
mapdpglem.y
|- ( ph -> Y e. V )
mapdpglem1.p
|- .(+) = ( LSSum ` C )
mapdpglem2.j
|- J = ( LSpan ` C )
mapdpglem3.f
|- F = ( Base ` C )
mapdpglem3.te
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) )
mapdpglem3.a
|- A = ( Scalar ` U )
mapdpglem3.b
|- B = ( Base ` A )
mapdpglem3.t
|- .x. = ( .s ` C )
mapdpglem3.r
|- R = ( -g ` C )
mapdpglem3.g
|- ( ph -> G e. F )
mapdpglem3.e
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
mapdpglem4.q
|- Q = ( 0g ` U )
mapdpglem.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
mapdpglem4.jt
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) )
mapdpglem4.z
|- .0. = ( 0g ` A )
mapdpglem4.g4
|- ( ph -> g e. B )
mapdpglem4.z4
|- ( ph -> z e. ( M ` ( N ` { Y } ) ) )
mapdpglem4.t4
|- ( ph -> t = ( ( g .x. G ) R z ) )
mapdpglem4.xn
|- ( ph -> X =/= Q )
mapdpglem12.yn
|- ( ph -> Y =/= Q )
mapdpglem17.ep
|- E = ( ( ( invr ` A ) ` g ) .x. z )
Assertion mapdpglem23
|- ( ph -> E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) )

Proof

Step Hyp Ref Expression
1 mapdpglem.h
 |-  H = ( LHyp ` K )
2 mapdpglem.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdpglem.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdpglem.v
 |-  V = ( Base ` U )
5 mapdpglem.s
 |-  .- = ( -g ` U )
6 mapdpglem.n
 |-  N = ( LSpan ` U )
7 mapdpglem.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdpglem.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 mapdpglem.x
 |-  ( ph -> X e. V )
10 mapdpglem.y
 |-  ( ph -> Y e. V )
11 mapdpglem1.p
 |-  .(+) = ( LSSum ` C )
12 mapdpglem2.j
 |-  J = ( LSpan ` C )
13 mapdpglem3.f
 |-  F = ( Base ` C )
14 mapdpglem3.te
 |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) )
15 mapdpglem3.a
 |-  A = ( Scalar ` U )
16 mapdpglem3.b
 |-  B = ( Base ` A )
17 mapdpglem3.t
 |-  .x. = ( .s ` C )
18 mapdpglem3.r
 |-  R = ( -g ` C )
19 mapdpglem3.g
 |-  ( ph -> G e. F )
20 mapdpglem3.e
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
21 mapdpglem4.q
 |-  Q = ( 0g ` U )
22 mapdpglem.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
23 mapdpglem4.jt
 |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) )
24 mapdpglem4.z
 |-  .0. = ( 0g ` A )
25 mapdpglem4.g4
 |-  ( ph -> g e. B )
26 mapdpglem4.z4
 |-  ( ph -> z e. ( M ` ( N ` { Y } ) ) )
27 mapdpglem4.t4
 |-  ( ph -> t = ( ( g .x. G ) R z ) )
28 mapdpglem4.xn
 |-  ( ph -> X =/= Q )
29 mapdpglem12.yn
 |-  ( ph -> Y =/= Q )
30 mapdpglem17.ep
 |-  E = ( ( ( invr ` A ) ` g ) .x. z )
31 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
32 eqid
 |-  ( LSubSp ` C ) = ( LSubSp ` C )
33 1 3 8 dvhlmod
 |-  ( ph -> U e. LMod )
34 4 31 6 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
35 33 10 34 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
36 1 2 3 31 7 32 8 35 mapdcl2
 |-  ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem19
 |-  ( ph -> E e. ( M ` ( N ` { Y } ) ) )
38 13 32 lssel
 |-  ( ( ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) /\ E e. ( M ` ( N ` { Y } ) ) ) -> E e. F )
39 36 37 38 syl2anc
 |-  ( ph -> E e. F )
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem20
 |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { E } ) )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem22
 |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R E ) } ) )
42 sneq
 |-  ( h = E -> { h } = { E } )
43 42 fveq2d
 |-  ( h = E -> ( J ` { h } ) = ( J ` { E } ) )
44 43 eqeq2d
 |-  ( h = E -> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( J ` { E } ) ) )
45 oveq2
 |-  ( h = E -> ( G R h ) = ( G R E ) )
46 45 sneqd
 |-  ( h = E -> { ( G R h ) } = { ( G R E ) } )
47 46 fveq2d
 |-  ( h = E -> ( J ` { ( G R h ) } ) = ( J ` { ( G R E ) } ) )
48 47 eqeq2d
 |-  ( h = E -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R E ) } ) ) )
49 44 48 anbi12d
 |-  ( h = E -> ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R E ) } ) ) ) )
50 49 rspcev
 |-  ( ( E e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R E ) } ) ) ) -> E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) )
51 39 40 41 50 syl12anc
 |-  ( ph -> E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) )