Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpglem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpglem.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpglem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpglem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpglem.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpglem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdpglem.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdpglem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
mapdpglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
mapdpglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
mapdpglem1.p |
⊢ ⊕ = ( LSSum ‘ 𝐶 ) |
12 |
|
mapdpglem2.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
14 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
4 5
|
lmodvsubcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
16 |
14 9 10 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
17 |
1 2 3 4 6 7 13 12 8 16
|
mapdspex |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( Base ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |
18 |
1 7 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
19 |
13 12
|
lspsnid |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑡 ∈ ( Base ‘ 𝐶 ) ) → 𝑡 ∈ ( 𝐽 ‘ { 𝑡 } ) ) |
20 |
18 19
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( Base ‘ 𝐶 ) ) → 𝑡 ∈ ( 𝐽 ‘ { 𝑡 } ) ) |
21 |
20
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) ) → 𝑡 ∈ ( 𝐽 ‘ { 𝑡 } ) ) |
22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |
23 |
21 22
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( Base ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) ) → 𝑡 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ) |
24 |
17 23 22
|
reximssdv |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11
|
mapdpglem1 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ⊆ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
26 |
25
|
sseld |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) |
27 |
26
|
anim1d |
⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) → ( 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) ) ) |
28 |
27
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) → ∃ 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) ) |
29 |
24 28
|
mpd |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |