Metamath Proof Explorer


Theorem mapdpglem2

Description: Lemma for mapdpg . Baer p. 45, lines 1 and 2: "we have (F(x-y))* = Gt where t necessarily belongs to (Fx)*+(Fy)*." (We scope $d t ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
Assertion mapdpglem2 φ t M N X ˙ M N Y M N X - ˙ Y = J t

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 eqid Base C = Base C
14 1 3 8 dvhlmod φ U LMod
15 4 5 lmodvsubcl U LMod X V Y V X - ˙ Y V
16 14 9 10 15 syl3anc φ X - ˙ Y V
17 1 2 3 4 6 7 13 12 8 16 mapdspex φ t Base C M N X - ˙ Y = J t
18 1 7 8 lcdlmod φ C LMod
19 13 12 lspsnid C LMod t Base C t J t
20 18 19 sylan φ t Base C t J t
21 20 adantrr φ t Base C M N X - ˙ Y = J t t J t
22 simprr φ t Base C M N X - ˙ Y = J t M N X - ˙ Y = J t
23 21 22 eleqtrrd φ t Base C M N X - ˙ Y = J t t M N X - ˙ Y
24 17 23 22 reximssdv φ t M N X - ˙ Y M N X - ˙ Y = J t
25 1 2 3 4 5 6 7 8 9 10 11 mapdpglem1 φ M N X - ˙ Y M N X ˙ M N Y
26 25 sseld φ t M N X - ˙ Y t M N X ˙ M N Y
27 26 anim1d φ t M N X - ˙ Y M N X - ˙ Y = J t t M N X ˙ M N Y M N X - ˙ Y = J t
28 27 reximdv2 φ t M N X - ˙ Y M N X - ˙ Y = J t t M N X ˙ M N Y M N X - ˙ Y = J t
29 24 28 mpd φ t M N X ˙ M N Y M N X - ˙ Y = J t