Metamath Proof Explorer


Theorem mapdpglem1

Description: Lemma for mapdpg . Baer p. 44, last line: "(F(x-y))* <= (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
Assertion mapdpglem1 φ M N X - ˙ Y M N X ˙ M N Y

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 1 3 8 dvhlmod φ U LMod
13 eqid LSSum U = LSSum U
14 4 5 13 6 lspsntrim U LMod X V Y V N X - ˙ Y N X LSSum U N Y
15 12 9 10 14 syl3anc φ N X - ˙ Y N X LSSum U N Y
16 eqid LSubSp U = LSubSp U
17 4 5 lmodvsubcl U LMod X V Y V X - ˙ Y V
18 12 9 10 17 syl3anc φ X - ˙ Y V
19 4 16 6 lspsncl U LMod X - ˙ Y V N X - ˙ Y LSubSp U
20 12 18 19 syl2anc φ N X - ˙ Y LSubSp U
21 4 16 6 lspsncl U LMod X V N X LSubSp U
22 12 9 21 syl2anc φ N X LSubSp U
23 4 16 6 lspsncl U LMod Y V N Y LSubSp U
24 12 10 23 syl2anc φ N Y LSubSp U
25 16 13 lsmcl U LMod N X LSubSp U N Y LSubSp U N X LSSum U N Y LSubSp U
26 12 22 24 25 syl3anc φ N X LSSum U N Y LSubSp U
27 1 3 16 2 8 20 26 mapdord φ M N X - ˙ Y M N X LSSum U N Y N X - ˙ Y N X LSSum U N Y
28 15 27 mpbird φ M N X - ˙ Y M N X LSSum U N Y
29 1 2 3 16 13 7 11 8 22 24 mapdlsm φ M N X LSSum U N Y = M N X ˙ M N Y
30 28 29 sseqtrd φ M N X - ˙ Y M N X ˙ M N Y