Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpg.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpg.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpg.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
mapdpg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
mapdpg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdpg.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
10 |
|
mapdpg.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
11 |
|
mapdpg.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdpg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
mapdpg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
|
mapdpg.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
mapdpg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
16 |
|
mapdpg.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
mapdpg.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
18 |
|
mapdpgem25.h1 |
⊢ ( 𝜑 → ( ℎ ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) |
19 |
|
mapdpgem25.i1 |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) |
20 |
|
mapdpglem26.a |
⊢ 𝐴 = ( Scalar ‘ 𝑈 ) |
21 |
|
mapdpglem26.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
22 |
|
mapdpglem26.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
23 |
|
mapdpglem26.o |
⊢ 𝑂 = ( 0g ‘ 𝐴 ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
mapdpglem25 |
⊢ ( 𝜑 → ( ( 𝐽 ‘ { ℎ } ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) |
25 |
24
|
simprd |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
27 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) ) |
29 |
1 8 12
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
30 |
1 8 12
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
31 |
18
|
simpld |
⊢ ( 𝜑 → ℎ ∈ 𝐹 ) |
32 |
9 10
|
lmodvsubcl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ℎ ∈ 𝐹 ) → ( 𝐺 𝑅 ℎ ) ∈ 𝐹 ) |
33 |
30 15 31 32
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 𝑅 ℎ ) ∈ 𝐹 ) |
34 |
19
|
simpld |
⊢ ( 𝜑 → 𝑖 ∈ 𝐹 ) |
35 |
9 10
|
lmodvsubcl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) → ( 𝐺 𝑅 𝑖 ) ∈ 𝐹 ) |
36 |
30 15 34 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 𝑅 𝑖 ) ∈ 𝐹 ) |
37 |
9 26 27 28 22 11 29 33 36
|
lspsneq |
⊢ ( 𝜑 → ( ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ↔ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) ) ) |
38 |
1 3 20 21 8 26 27 12
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 ) |
39 |
1 3 20 23 8 26 28 12
|
lcd0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = 𝑂 ) |
40 |
39
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } = { 𝑂 } ) |
41 |
38 40
|
difeq12d |
⊢ ( 𝜑 → ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) = ( 𝐵 ∖ { 𝑂 } ) ) |
42 |
41
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) ↔ ∃ 𝑣 ∈ ( 𝐵 ∖ { 𝑂 } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) ) ) |
43 |
37 42
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ↔ ∃ 𝑣 ∈ ( 𝐵 ∖ { 𝑂 } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) ) ) |
44 |
25 43
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑣 ∈ ( 𝐵 ∖ { 𝑂 } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) ) |