| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpg.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpg.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpg.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpg.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpg.z |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | mapdpg.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | mapdpg.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | mapdpg.f |  |-  F = ( Base ` C ) | 
						
							| 10 |  | mapdpg.r |  |-  R = ( -g ` C ) | 
						
							| 11 |  | mapdpg.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdpg.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | mapdpg.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 14 |  | mapdpg.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 15 |  | mapdpg.g |  |-  ( ph -> G e. F ) | 
						
							| 16 |  | mapdpg.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 17 |  | mapdpg.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 18 |  | mapdpgem25.h1 |  |-  ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) | 
						
							| 19 |  | mapdpgem25.i1 |  |-  ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) | 
						
							| 20 |  | mapdpglem26.a |  |-  A = ( Scalar ` U ) | 
						
							| 21 |  | mapdpglem26.b |  |-  B = ( Base ` A ) | 
						
							| 22 |  | mapdpglem26.t |  |-  .x. = ( .s ` C ) | 
						
							| 23 |  | mapdpglem26.o |  |-  O = ( 0g ` A ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mapdpglem25 |  |-  ( ph -> ( ( J ` { h } ) = ( J ` { i } ) /\ ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) ) ) | 
						
							| 25 | 24 | simprd |  |-  ( ph -> ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) ) | 
						
							| 26 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 27 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` ( Scalar ` C ) ) = ( 0g ` ( Scalar ` C ) ) | 
						
							| 29 | 1 8 12 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 30 | 1 8 12 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 31 | 18 | simpld |  |-  ( ph -> h e. F ) | 
						
							| 32 | 9 10 | lmodvsubcl |  |-  ( ( C e. LMod /\ G e. F /\ h e. F ) -> ( G R h ) e. F ) | 
						
							| 33 | 30 15 31 32 | syl3anc |  |-  ( ph -> ( G R h ) e. F ) | 
						
							| 34 | 19 | simpld |  |-  ( ph -> i e. F ) | 
						
							| 35 | 9 10 | lmodvsubcl |  |-  ( ( C e. LMod /\ G e. F /\ i e. F ) -> ( G R i ) e. F ) | 
						
							| 36 | 30 15 34 35 | syl3anc |  |-  ( ph -> ( G R i ) e. F ) | 
						
							| 37 | 9 26 27 28 22 11 29 33 36 | lspsneq |  |-  ( ph -> ( ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) <-> E. v e. ( ( Base ` ( Scalar ` C ) ) \ { ( 0g ` ( Scalar ` C ) ) } ) ( G R h ) = ( v .x. ( G R i ) ) ) ) | 
						
							| 38 | 1 3 20 21 8 26 27 12 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B ) | 
						
							| 39 | 1 3 20 23 8 26 28 12 | lcd0 |  |-  ( ph -> ( 0g ` ( Scalar ` C ) ) = O ) | 
						
							| 40 | 39 | sneqd |  |-  ( ph -> { ( 0g ` ( Scalar ` C ) ) } = { O } ) | 
						
							| 41 | 38 40 | difeq12d |  |-  ( ph -> ( ( Base ` ( Scalar ` C ) ) \ { ( 0g ` ( Scalar ` C ) ) } ) = ( B \ { O } ) ) | 
						
							| 42 | 41 | rexeqdv |  |-  ( ph -> ( E. v e. ( ( Base ` ( Scalar ` C ) ) \ { ( 0g ` ( Scalar ` C ) ) } ) ( G R h ) = ( v .x. ( G R i ) ) <-> E. v e. ( B \ { O } ) ( G R h ) = ( v .x. ( G R i ) ) ) ) | 
						
							| 43 | 37 42 | bitrd |  |-  ( ph -> ( ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) <-> E. v e. ( B \ { O } ) ( G R h ) = ( v .x. ( G R i ) ) ) ) | 
						
							| 44 | 25 43 | mpbid |  |-  ( ph -> E. v e. ( B \ { O } ) ( G R h ) = ( v .x. ( G R i ) ) ) |