| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpg.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpg.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpg.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpg.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpg.z |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | mapdpg.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | mapdpg.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | mapdpg.f |  |-  F = ( Base ` C ) | 
						
							| 10 |  | mapdpg.r |  |-  R = ( -g ` C ) | 
						
							| 11 |  | mapdpg.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdpg.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | mapdpg.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 14 |  | mapdpg.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 15 |  | mapdpg.g |  |-  ( ph -> G e. F ) | 
						
							| 16 |  | mapdpg.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 17 |  | mapdpg.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 18 |  | mapdpgem25.h1 |  |-  ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) | 
						
							| 19 |  | mapdpgem25.i1 |  |-  ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) | 
						
							| 20 | 18 | simprd |  |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { h } ) ) | 
						
							| 22 | 19 | simprd |  |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) | 
						
							| 23 | 22 | simpld |  |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { i } ) ) | 
						
							| 24 | 21 23 | eqtr3d |  |-  ( ph -> ( J ` { h } ) = ( J ` { i } ) ) | 
						
							| 25 | 20 | simprd |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) | 
						
							| 26 | 22 | simprd |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) | 
						
							| 27 | 25 26 | eqtr3d |  |-  ( ph -> ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) ) | 
						
							| 28 | 24 27 | jca |  |-  ( ph -> ( ( J ` { h } ) = ( J ` { i } ) /\ ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) ) ) |