Metamath Proof Explorer


Theorem mapdpglem26

Description: Lemma for mapdpg . Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d u ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h
|- H = ( LHyp ` K )
mapdpg.m
|- M = ( ( mapd ` K ) ` W )
mapdpg.u
|- U = ( ( DVecH ` K ) ` W )
mapdpg.v
|- V = ( Base ` U )
mapdpg.s
|- .- = ( -g ` U )
mapdpg.z
|- .0. = ( 0g ` U )
mapdpg.n
|- N = ( LSpan ` U )
mapdpg.c
|- C = ( ( LCDual ` K ) ` W )
mapdpg.f
|- F = ( Base ` C )
mapdpg.r
|- R = ( -g ` C )
mapdpg.j
|- J = ( LSpan ` C )
mapdpg.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdpg.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdpg.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdpg.g
|- ( ph -> G e. F )
mapdpg.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
mapdpg.e
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
mapdpgem25.h1
|- ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) )
mapdpgem25.i1
|- ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) )
mapdpglem26.a
|- A = ( Scalar ` U )
mapdpglem26.b
|- B = ( Base ` A )
mapdpglem26.t
|- .x. = ( .s ` C )
mapdpglem26.o
|- O = ( 0g ` A )
Assertion mapdpglem26
|- ( ph -> E. u e. ( B \ { O } ) h = ( u .x. i ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h
 |-  H = ( LHyp ` K )
2 mapdpg.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdpg.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdpg.v
 |-  V = ( Base ` U )
5 mapdpg.s
 |-  .- = ( -g ` U )
6 mapdpg.z
 |-  .0. = ( 0g ` U )
7 mapdpg.n
 |-  N = ( LSpan ` U )
8 mapdpg.c
 |-  C = ( ( LCDual ` K ) ` W )
9 mapdpg.f
 |-  F = ( Base ` C )
10 mapdpg.r
 |-  R = ( -g ` C )
11 mapdpg.j
 |-  J = ( LSpan ` C )
12 mapdpg.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
13 mapdpg.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
14 mapdpg.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
15 mapdpg.g
 |-  ( ph -> G e. F )
16 mapdpg.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
17 mapdpg.e
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
18 mapdpgem25.h1
 |-  ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) )
19 mapdpgem25.i1
 |-  ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) )
20 mapdpglem26.a
 |-  A = ( Scalar ` U )
21 mapdpglem26.b
 |-  B = ( Base ` A )
22 mapdpglem26.t
 |-  .x. = ( .s ` C )
23 mapdpglem26.o
 |-  O = ( 0g ` A )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem25
 |-  ( ph -> ( ( J ` { h } ) = ( J ` { i } ) /\ ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) ) )
25 24 simpld
 |-  ( ph -> ( J ` { h } ) = ( J ` { i } ) )
26 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
27 eqid
 |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) )
28 eqid
 |-  ( 0g ` ( Scalar ` C ) ) = ( 0g ` ( Scalar ` C ) )
29 1 8 12 lcdlvec
 |-  ( ph -> C e. LVec )
30 18 simpld
 |-  ( ph -> h e. F )
31 19 simpld
 |-  ( ph -> i e. F )
32 9 26 27 28 22 11 29 30 31 lspsneq
 |-  ( ph -> ( ( J ` { h } ) = ( J ` { i } ) <-> E. u e. ( ( Base ` ( Scalar ` C ) ) \ { ( 0g ` ( Scalar ` C ) ) } ) h = ( u .x. i ) ) )
33 1 3 20 21 8 26 27 12 lcdsbase
 |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B )
34 1 3 20 23 8 26 28 12 lcd0
 |-  ( ph -> ( 0g ` ( Scalar ` C ) ) = O )
35 34 sneqd
 |-  ( ph -> { ( 0g ` ( Scalar ` C ) ) } = { O } )
36 33 35 difeq12d
 |-  ( ph -> ( ( Base ` ( Scalar ` C ) ) \ { ( 0g ` ( Scalar ` C ) ) } ) = ( B \ { O } ) )
37 36 rexeqdv
 |-  ( ph -> ( E. u e. ( ( Base ` ( Scalar ` C ) ) \ { ( 0g ` ( Scalar ` C ) ) } ) h = ( u .x. i ) <-> E. u e. ( B \ { O } ) h = ( u .x. i ) ) )
38 32 37 bitrd
 |-  ( ph -> ( ( J ` { h } ) = ( J ` { i } ) <-> E. u e. ( B \ { O } ) h = ( u .x. i ) ) )
39 25 38 mpbid
 |-  ( ph -> E. u e. ( B \ { O } ) h = ( u .x. i ) )