Description: Lemma for mapdpg . Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d u ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 22-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpg.h | |
|
mapdpg.m | |
||
mapdpg.u | |
||
mapdpg.v | |
||
mapdpg.s | |
||
mapdpg.z | |
||
mapdpg.n | |
||
mapdpg.c | |
||
mapdpg.f | |
||
mapdpg.r | |
||
mapdpg.j | |
||
mapdpg.k | |
||
mapdpg.x | |
||
mapdpg.y | |
||
mapdpg.g | |
||
mapdpg.ne | |
||
mapdpg.e | |
||
mapdpgem25.h1 | |
||
mapdpgem25.i1 | |
||
mapdpglem26.a | |
||
mapdpglem26.b | |
||
mapdpglem26.t | |
||
mapdpglem26.o | |
||
Assertion | mapdpglem26 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpg.h | |
|
2 | mapdpg.m | |
|
3 | mapdpg.u | |
|
4 | mapdpg.v | |
|
5 | mapdpg.s | |
|
6 | mapdpg.z | |
|
7 | mapdpg.n | |
|
8 | mapdpg.c | |
|
9 | mapdpg.f | |
|
10 | mapdpg.r | |
|
11 | mapdpg.j | |
|
12 | mapdpg.k | |
|
13 | mapdpg.x | |
|
14 | mapdpg.y | |
|
15 | mapdpg.g | |
|
16 | mapdpg.ne | |
|
17 | mapdpg.e | |
|
18 | mapdpgem25.h1 | |
|
19 | mapdpgem25.i1 | |
|
20 | mapdpglem26.a | |
|
21 | mapdpglem26.b | |
|
22 | mapdpglem26.t | |
|
23 | mapdpglem26.o | |
|
24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mapdpglem25 | |
25 | 24 | simpld | |
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 1 8 12 | lcdlvec | |
30 | 18 | simpld | |
31 | 19 | simpld | |
32 | 9 26 27 28 22 11 29 30 31 | lspsneq | |
33 | 1 3 20 21 8 26 27 12 | lcdsbase | |
34 | 1 3 20 23 8 26 28 12 | lcd0 | |
35 | 34 | sneqd | |
36 | 33 35 | difeq12d | |
37 | 36 | rexeqdv | |
38 | 32 37 | bitrd | |
39 | 25 38 | mpbid | |