Metamath Proof Explorer


Theorem mapdpglem26

Description: Lemma for mapdpg . Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d u ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
mapdpglem26.a A=ScalarU
mapdpglem26.b B=BaseA
mapdpglem26.t ·˙=C
mapdpglem26.o O=0A
Assertion mapdpglem26 φuBOh=u·˙i

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
19 mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
20 mapdpglem26.a A=ScalarU
21 mapdpglem26.b B=BaseA
22 mapdpglem26.t ·˙=C
23 mapdpglem26.o O=0A
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem25 φJh=JiJGRh=JGRi
25 24 simpld φJh=Ji
26 eqid ScalarC=ScalarC
27 eqid BaseScalarC=BaseScalarC
28 eqid 0ScalarC=0ScalarC
29 1 8 12 lcdlvec φCLVec
30 18 simpld φhF
31 19 simpld φiF
32 9 26 27 28 22 11 29 30 31 lspsneq φJh=JiuBaseScalarC0ScalarCh=u·˙i
33 1 3 20 21 8 26 27 12 lcdsbase φBaseScalarC=B
34 1 3 20 23 8 26 28 12 lcd0 φ0ScalarC=O
35 34 sneqd φ0ScalarC=O
36 33 35 difeq12d φBaseScalarC0ScalarC=BO
37 36 rexeqdv φuBaseScalarC0ScalarCh=u·˙iuBOh=u·˙i
38 32 37 bitrd φJh=JiuBOh=u·˙i
39 25 38 mpbid φuBOh=u·˙i