Metamath Proof Explorer


Theorem mapdpglem26

Description: Lemma for mapdpg . Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d u ph locally to avoid clashes with later substitutions into ph .) (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
mapdpg.s = ( -g𝑈 )
mapdpg.z 0 = ( 0g𝑈 )
mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
mapdpg.r 𝑅 = ( -g𝐶 )
mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.g ( 𝜑𝐺𝐹 )
mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
mapdpglem26.t · = ( ·𝑠𝐶 )
mapdpglem26.o 𝑂 = ( 0g𝐴 )
Assertion mapdpglem26 ( 𝜑 → ∃ 𝑢 ∈ ( 𝐵 ∖ { 𝑂 } ) = ( 𝑢 · 𝑖 ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpg.s = ( -g𝑈 )
6 mapdpg.z 0 = ( 0g𝑈 )
7 mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
8 mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
10 mapdpg.r 𝑅 = ( -g𝐶 )
11 mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
15 mapdpg.g ( 𝜑𝐺𝐹 )
16 mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
17 mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
18 mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
19 mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
20 mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
21 mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
22 mapdpglem26.t · = ( ·𝑠𝐶 )
23 mapdpglem26.o 𝑂 = ( 0g𝐴 )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem25 ( 𝜑 → ( ( 𝐽 ‘ { } ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) )
25 24 simpld ( 𝜑 → ( 𝐽 ‘ { } ) = ( 𝐽 ‘ { 𝑖 } ) )
26 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
27 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
28 eqid ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = ( 0g ‘ ( Scalar ‘ 𝐶 ) )
29 1 8 12 lcdlvec ( 𝜑𝐶 ∈ LVec )
30 18 simpld ( 𝜑𝐹 )
31 19 simpld ( 𝜑𝑖𝐹 )
32 9 26 27 28 22 11 29 30 31 lspsneq ( 𝜑 → ( ( 𝐽 ‘ { } ) = ( 𝐽 ‘ { 𝑖 } ) ↔ ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) = ( 𝑢 · 𝑖 ) ) )
33 1 3 20 21 8 26 27 12 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 )
34 1 3 20 23 8 26 28 12 lcd0 ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐶 ) ) = 𝑂 )
35 34 sneqd ( 𝜑 → { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } = { 𝑂 } )
36 33 35 difeq12d ( 𝜑 → ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) = ( 𝐵 ∖ { 𝑂 } ) )
37 36 rexeqdv ( 𝜑 → ( ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝐶 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝐶 ) ) } ) = ( 𝑢 · 𝑖 ) ↔ ∃ 𝑢 ∈ ( 𝐵 ∖ { 𝑂 } ) = ( 𝑢 · 𝑖 ) ) )
38 32 37 bitrd ( 𝜑 → ( ( 𝐽 ‘ { } ) = ( 𝐽 ‘ { 𝑖 } ) ↔ ∃ 𝑢 ∈ ( 𝐵 ∖ { 𝑂 } ) = ( 𝑢 · 𝑖 ) ) )
39 25 38 mpbid ( 𝜑 → ∃ 𝑢 ∈ ( 𝐵 ∖ { 𝑂 } ) = ( 𝑢 · 𝑖 ) )