Description: Lemma for mapdpg . Uniqueness part - consolidate hypotheses in mapdpglem31 . (Contributed by NM, 23-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpg.h | |
|
mapdpg.m | |
||
mapdpg.u | |
||
mapdpg.v | |
||
mapdpg.s | |
||
mapdpg.z | |
||
mapdpg.n | |
||
mapdpg.c | |
||
mapdpg.f | |
||
mapdpg.r | |
||
mapdpg.j | |
||
mapdpg.k | |
||
mapdpg.x | |
||
mapdpg.y | |
||
mapdpg.g | |
||
mapdpg.ne | |
||
mapdpg.e | |
||
Assertion | mapdpglem32 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpg.h | |
|
2 | mapdpg.m | |
|
3 | mapdpg.u | |
|
4 | mapdpg.v | |
|
5 | mapdpg.s | |
|
6 | mapdpg.z | |
|
7 | mapdpg.n | |
|
8 | mapdpg.c | |
|
9 | mapdpg.f | |
|
10 | mapdpg.r | |
|
11 | mapdpg.j | |
|
12 | mapdpg.k | |
|
13 | mapdpg.x | |
|
14 | mapdpg.y | |
|
15 | mapdpg.g | |
|
16 | mapdpg.ne | |
|
17 | mapdpg.e | |
|
18 | 12 | 3ad2ant1 | |
19 | 13 | 3ad2ant1 | |
20 | 14 | 3ad2ant1 | |
21 | 15 | 3ad2ant1 | |
22 | 16 | 3ad2ant1 | |
23 | 17 | 3ad2ant1 | |
24 | simp2l | |
|
25 | simp3l | |
|
26 | 24 25 | jca | |
27 | simp2r | |
|
28 | simp3r | |
|
29 | 27 28 | jca | |
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 | mapdpglem26 | |
35 | 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 | mapdpglem27 | |
36 | reeanv | |
|
37 | 34 35 36 | sylanbrc | |
38 | 18 | 3ad2ant1 | |
39 | 19 | 3ad2ant1 | |
40 | 20 | 3ad2ant1 | |
41 | 21 | 3ad2ant1 | |
42 | 22 | 3ad2ant1 | |
43 | 23 | 3ad2ant1 | |
44 | simp12l | |
|
45 | simp13l | |
|
46 | 44 45 | jca | |
47 | simp12r | |
|
48 | simp13r | |
|
49 | 47 48 | jca | |
50 | eldifi | |
|
51 | 50 | adantl | |
52 | 51 | 3ad2ant2 | |
53 | simp3l | |
|
54 | simp3r | |
|
55 | eldifi | |
|
56 | 55 | adantr | |
57 | 56 | 3ad2ant2 | |
58 | 1 2 3 4 5 6 7 8 9 10 11 38 39 40 41 42 43 46 49 30 31 32 33 52 53 54 57 | mapdpglem31 | |
59 | 58 | 3exp | |
60 | 59 | rexlimdvv | |
61 | 37 60 | mpd | |