Metamath Proof Explorer


Theorem mapdpglem32

Description: Lemma for mapdpg . Uniqueness part - consolidate hypotheses in mapdpglem31 . (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
Assertion mapdpglem32 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRih=i

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 12 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiKHLWH
19 13 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiXV0˙
20 14 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiYV0˙
21 15 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiGF
22 16 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiNXNY
23 17 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiMNX=JG
24 simp2l φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRihF
25 simp3l φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiMNY=JhMNX-˙Y=JGRh
26 24 25 jca φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRihFMNY=JhMNX-˙Y=JGRh
27 simp2r φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiiF
28 simp3r φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiMNY=JiMNX-˙Y=JGRi
29 27 28 jca φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiiFMNY=JiMNX-˙Y=JGRi
30 eqid ScalarU=ScalarU
31 eqid BaseScalarU=BaseScalarU
32 eqid C=C
33 eqid 0ScalarU=0ScalarU
34 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 mapdpglem26 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUh=uCi
35 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 mapdpglem27 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRivBaseScalarU0ScalarUGRh=vCGRi
36 reeanv uBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiuBaseScalarU0ScalarUh=uCivBaseScalarU0ScalarUGRh=vCGRi
37 34 35 36 sylanbrc φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRi
38 18 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiKHLWH
39 19 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiXV0˙
40 20 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiYV0˙
41 21 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiGF
42 22 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiNXNY
43 23 3ad2ant1 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiMNX=JG
44 simp12l φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRihF
45 simp13l φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiMNY=JhMNX-˙Y=JGRh
46 44 45 jca φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRihFMNY=JhMNX-˙Y=JGRh
47 simp12r φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiiF
48 simp13r φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiMNY=JiMNX-˙Y=JGRi
49 47 48 jca φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiiFMNY=JiMNX-˙Y=JGRi
50 eldifi vBaseScalarU0ScalarUvBaseScalarU
51 50 adantl uBaseScalarU0ScalarUvBaseScalarU0ScalarUvBaseScalarU
52 51 3ad2ant2 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRivBaseScalarU
53 simp3l φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRih=uCi
54 simp3r φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiGRh=vCGRi
55 eldifi uBaseScalarU0ScalarUuBaseScalarU
56 55 adantr uBaseScalarU0ScalarUvBaseScalarU0ScalarUuBaseScalarU
57 56 3ad2ant2 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRiuBaseScalarU
58 1 2 3 4 5 6 7 8 9 10 11 38 39 40 41 42 43 46 49 30 31 32 33 52 53 54 57 mapdpglem31 φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRih=i
59 58 3exp φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRih=i
60 59 rexlimdvv φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRiuBaseScalarU0ScalarUvBaseScalarU0ScalarUh=uCiGRh=vCGRih=i
61 37 60 mpd φhFiFMNY=JhMNX-˙Y=JGRhMNY=JiMNX-˙Y=JGRih=i