Metamath Proof Explorer


Theorem mapdpglem32

Description: Lemma for mapdpg . Uniqueness part - consolidate hypotheses in mapdpglem31 . (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H = LHyp K
mapdpg.m M = mapd K W
mapdpg.u U = DVecH K W
mapdpg.v V = Base U
mapdpg.s - ˙ = - U
mapdpg.z 0 ˙ = 0 U
mapdpg.n N = LSpan U
mapdpg.c C = LCDual K W
mapdpg.f F = Base C
mapdpg.r R = - C
mapdpg.j J = LSpan C
mapdpg.k φ K HL W H
mapdpg.x φ X V 0 ˙
mapdpg.y φ Y V 0 ˙
mapdpg.g φ G F
mapdpg.ne φ N X N Y
mapdpg.e φ M N X = J G
Assertion mapdpglem32 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i h = i

Proof

Step Hyp Ref Expression
1 mapdpg.h H = LHyp K
2 mapdpg.m M = mapd K W
3 mapdpg.u U = DVecH K W
4 mapdpg.v V = Base U
5 mapdpg.s - ˙ = - U
6 mapdpg.z 0 ˙ = 0 U
7 mapdpg.n N = LSpan U
8 mapdpg.c C = LCDual K W
9 mapdpg.f F = Base C
10 mapdpg.r R = - C
11 mapdpg.j J = LSpan C
12 mapdpg.k φ K HL W H
13 mapdpg.x φ X V 0 ˙
14 mapdpg.y φ Y V 0 ˙
15 mapdpg.g φ G F
16 mapdpg.ne φ N X N Y
17 mapdpg.e φ M N X = J G
18 12 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i K HL W H
19 13 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i X V 0 ˙
20 14 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i Y V 0 ˙
21 15 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i G F
22 16 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i N X N Y
23 17 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i M N X = J G
24 simp2l φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i h F
25 simp3l φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i M N Y = J h M N X - ˙ Y = J G R h
26 24 25 jca φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i h F M N Y = J h M N X - ˙ Y = J G R h
27 simp2r φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i i F
28 simp3r φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i M N Y = J i M N X - ˙ Y = J G R i
29 27 28 jca φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i i F M N Y = J i M N X - ˙ Y = J G R i
30 eqid Scalar U = Scalar U
31 eqid Base Scalar U = Base Scalar U
32 eqid C = C
33 eqid 0 Scalar U = 0 Scalar U
34 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 mapdpglem26 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U h = u C i
35 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 mapdpglem27 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i v Base Scalar U 0 Scalar U G R h = v C G R i
36 reeanv u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i u Base Scalar U 0 Scalar U h = u C i v Base Scalar U 0 Scalar U G R h = v C G R i
37 34 35 36 sylanbrc φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i
38 18 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i K HL W H
39 19 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i X V 0 ˙
40 20 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i Y V 0 ˙
41 21 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i G F
42 22 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i N X N Y
43 23 3ad2ant1 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i M N X = J G
44 simp12l φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i h F
45 simp13l φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i M N Y = J h M N X - ˙ Y = J G R h
46 44 45 jca φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i h F M N Y = J h M N X - ˙ Y = J G R h
47 simp12r φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i i F
48 simp13r φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i M N Y = J i M N X - ˙ Y = J G R i
49 47 48 jca φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i i F M N Y = J i M N X - ˙ Y = J G R i
50 eldifi v Base Scalar U 0 Scalar U v Base Scalar U
51 50 adantl u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U v Base Scalar U
52 51 3ad2ant2 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i v Base Scalar U
53 simp3l φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i h = u C i
54 simp3r φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i G R h = v C G R i
55 eldifi u Base Scalar U 0 Scalar U u Base Scalar U
56 55 adantr u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U u Base Scalar U
57 56 3ad2ant2 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i u Base Scalar U
58 1 2 3 4 5 6 7 8 9 10 11 38 39 40 41 42 43 46 49 30 31 32 33 52 53 54 57 mapdpglem31 φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i h = i
59 58 3exp φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i h = i
60 59 rexlimdvv φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i u Base Scalar U 0 Scalar U v Base Scalar U 0 Scalar U h = u C i G R h = v C G R i h = i
61 37 60 mpd φ h F i F M N Y = J h M N X - ˙ Y = J G R h M N Y = J i M N X - ˙ Y = J G R i h = i