Metamath Proof Explorer


Theorem mapdh6lem1N

Description: Lemma for mapdh6N . Part (6) in Baer p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdhe6.y φ Y V 0 ˙
mapdhe6.z φ Z V 0 ˙
mapdhe6.xn φ ¬ X N Y Z
mapdh6.yz φ N Y N Z
mapdh6.fg φ I X F Y = G
mapdh6.fe φ I X F Z = E
Assertion mapdh6lem1N φ M N X - ˙ Y + ˙ Z = J F R G ˙ E

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdhe6.y φ Y V 0 ˙
21 mapdhe6.z φ Z V 0 ˙
22 mapdhe6.xn φ ¬ X N Y Z
23 mapdh6.yz φ N Y N Z
24 mapdh6.fg φ I X F Y = G
25 mapdh6.fe φ I X F Z = E
26 eqid LSubSp U = LSubSp U
27 3 5 14 dvhlmod φ U LMod
28 17 eldifad φ X V
29 20 eldifad φ Y V
30 6 7 lmodvsubcl U LMod X V Y V X - ˙ Y V
31 27 28 29 30 syl3anc φ X - ˙ Y V
32 6 26 9 lspsncl U LMod X - ˙ Y V N X - ˙ Y LSubSp U
33 27 31 32 syl2anc φ N X - ˙ Y LSubSp U
34 21 eldifad φ Z V
35 6 26 9 lspsncl U LMod Z V N Z LSubSp U
36 27 34 35 syl2anc φ N Z LSubSp U
37 eqid LSSum U = LSSum U
38 26 37 lsmcl U LMod N X - ˙ Y LSubSp U N Z LSubSp U N X - ˙ Y LSSum U N Z LSubSp U
39 27 33 36 38 syl3anc φ N X - ˙ Y LSSum U N Z LSubSp U
40 6 7 lmodvsubcl U LMod X V Z V X - ˙ Z V
41 27 28 34 40 syl3anc φ X - ˙ Z V
42 6 26 9 lspsncl U LMod X - ˙ Z V N X - ˙ Z LSubSp U
43 27 41 42 syl2anc φ N X - ˙ Z LSubSp U
44 6 26 9 lspsncl U LMod Y V N Y LSubSp U
45 27 29 44 syl2anc φ N Y LSubSp U
46 26 37 lsmcl U LMod N X - ˙ Z LSubSp U N Y LSubSp U N X - ˙ Z LSSum U N Y LSubSp U
47 27 43 45 46 syl3anc φ N X - ˙ Z LSSum U N Y LSubSp U
48 3 4 5 26 14 39 47 mapdin φ M N X - ˙ Y LSSum U N Z N X - ˙ Z LSSum U N Y = M N X - ˙ Y LSSum U N Z M N X - ˙ Z LSSum U N Y
49 eqid LSSum C = LSSum C
50 3 4 5 26 37 10 49 14 33 36 mapdlsm φ M N X - ˙ Y LSSum U N Z = M N X - ˙ Y LSSum C M N Z
51 3 4 5 26 37 10 49 14 43 45 mapdlsm φ M N X - ˙ Z LSSum U N Y = M N X - ˙ Z LSSum C M N Y
52 50 51 ineq12d φ M N X - ˙ Y LSSum U N Z M N X - ˙ Z LSSum U N Y = M N X - ˙ Y LSSum C M N Z M N X - ˙ Z LSSum C M N Y
53 3 5 14 dvhlvec φ U LVec
54 6 8 9 53 29 21 28 23 22 lspindp2 φ N X N Y ¬ Z N X Y
55 54 simpld φ N X N Y
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 55 mapdhcl φ I X F Y D
57 24 56 eqeltrrd φ G D
58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 57 55 mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G
59 24 58 mpbid φ M N Y = J G M N X - ˙ Y = J F R G
60 59 simprd φ M N X - ˙ Y = J F R G
61 6 8 9 53 20 34 28 23 22 lspindp1 φ N X N Z ¬ Y N X Z
62 61 simpld φ N X N Z
63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 34 62 mapdhcl φ I X F Z D
64 25 63 eqeltrrd φ E D
65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 64 62 mapdheq φ I X F Z = E M N Z = J E M N X - ˙ Z = J F R E
66 25 65 mpbid φ M N Z = J E M N X - ˙ Z = J F R E
67 66 simpld φ M N Z = J E
68 60 67 oveq12d φ M N X - ˙ Y LSSum C M N Z = J F R G LSSum C J E
69 66 simprd φ M N X - ˙ Z = J F R E
70 59 simpld φ M N Y = J G
71 69 70 oveq12d φ M N X - ˙ Z LSSum C M N Y = J F R E LSSum C J G
72 68 71 ineq12d φ M N X - ˙ Y LSSum C M N Z M N X - ˙ Z LSSum C M N Y = J F R G LSSum C J E J F R E LSSum C J G
73 52 72 eqtrd φ M N X - ˙ Y LSSum U N Z M N X - ˙ Z LSSum U N Y = J F R G LSSum C J E J F R E LSSum C J G
74 48 73 eqtrd φ M N X - ˙ Y LSSum U N Z N X - ˙ Z LSSum U N Y = J F R G LSSum C J E J F R E LSSum C J G
75 6 7 8 37 9 53 28 22 23 20 21 18 baerlem5a φ N X - ˙ Y + ˙ Z = N X - ˙ Y LSSum U N Z N X - ˙ Z LSSum U N Y
76 75 fveq2d φ M N X - ˙ Y + ˙ Z = M N X - ˙ Y LSSum U N Z N X - ˙ Z LSSum U N Y
77 3 10 14 lcdlvec φ C LVec
78 3 4 5 6 9 10 11 13 14 15 16 28 29 57 70 34 64 67 22 mapdindp φ ¬ F J G E
79 3 4 5 6 9 10 11 13 14 57 70 29 34 64 67 23 mapdncol φ J G J E
80 3 4 5 6 9 10 11 13 14 57 70 8 1 20 mapdn0 φ G D Q
81 3 4 5 6 9 10 11 13 14 64 67 8 1 21 mapdn0 φ E D Q
82 11 12 1 49 13 77 15 78 79 80 81 19 baerlem5a φ J F R G ˙ E = J F R G LSSum C J E J F R E LSSum C J G
83 74 76 82 3eqtr4d φ M N X - ˙ Y + ˙ Z = J F R G ˙ E