Metamath Proof Explorer


Theorem mapdh6lem1N

Description: Lemma for mapdh6N . Part (6) in Baer p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdhe6.y φYV0˙
mapdhe6.z φZV0˙
mapdhe6.xn φ¬XNYZ
mapdh6.yz φNYNZ
mapdh6.fg φIXFY=G
mapdh6.fe φIXFZ=E
Assertion mapdh6lem1N φMNX-˙Y+˙Z=JFRG˙E

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdhe6.y φYV0˙
21 mapdhe6.z φZV0˙
22 mapdhe6.xn φ¬XNYZ
23 mapdh6.yz φNYNZ
24 mapdh6.fg φIXFY=G
25 mapdh6.fe φIXFZ=E
26 eqid LSubSpU=LSubSpU
27 3 5 14 dvhlmod φULMod
28 17 eldifad φXV
29 20 eldifad φYV
30 6 7 lmodvsubcl ULModXVYVX-˙YV
31 27 28 29 30 syl3anc φX-˙YV
32 6 26 9 lspsncl ULModX-˙YVNX-˙YLSubSpU
33 27 31 32 syl2anc φNX-˙YLSubSpU
34 21 eldifad φZV
35 6 26 9 lspsncl ULModZVNZLSubSpU
36 27 34 35 syl2anc φNZLSubSpU
37 eqid LSSumU=LSSumU
38 26 37 lsmcl ULModNX-˙YLSubSpUNZLSubSpUNX-˙YLSSumUNZLSubSpU
39 27 33 36 38 syl3anc φNX-˙YLSSumUNZLSubSpU
40 6 7 lmodvsubcl ULModXVZVX-˙ZV
41 27 28 34 40 syl3anc φX-˙ZV
42 6 26 9 lspsncl ULModX-˙ZVNX-˙ZLSubSpU
43 27 41 42 syl2anc φNX-˙ZLSubSpU
44 6 26 9 lspsncl ULModYVNYLSubSpU
45 27 29 44 syl2anc φNYLSubSpU
46 26 37 lsmcl ULModNX-˙ZLSubSpUNYLSubSpUNX-˙ZLSSumUNYLSubSpU
47 27 43 45 46 syl3anc φNX-˙ZLSSumUNYLSubSpU
48 3 4 5 26 14 39 47 mapdin φMNX-˙YLSSumUNZNX-˙ZLSSumUNY=MNX-˙YLSSumUNZMNX-˙ZLSSumUNY
49 eqid LSSumC=LSSumC
50 3 4 5 26 37 10 49 14 33 36 mapdlsm φMNX-˙YLSSumUNZ=MNX-˙YLSSumCMNZ
51 3 4 5 26 37 10 49 14 43 45 mapdlsm φMNX-˙ZLSSumUNY=MNX-˙ZLSSumCMNY
52 50 51 ineq12d φMNX-˙YLSSumUNZMNX-˙ZLSSumUNY=MNX-˙YLSSumCMNZMNX-˙ZLSSumCMNY
53 3 5 14 dvhlvec φULVec
54 6 8 9 53 29 21 28 23 22 lspindp2 φNXNY¬ZNXY
55 54 simpld φNXNY
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 29 55 mapdhcl φIXFYD
57 24 56 eqeltrrd φGD
58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 57 55 mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG
59 24 58 mpbid φMNY=JGMNX-˙Y=JFRG
60 59 simprd φMNX-˙Y=JFRG
61 6 8 9 53 20 34 28 23 22 lspindp1 φNXNZ¬YNXZ
62 61 simpld φNXNZ
63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 34 62 mapdhcl φIXFZD
64 25 63 eqeltrrd φED
65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 64 62 mapdheq φIXFZ=EMNZ=JEMNX-˙Z=JFRE
66 25 65 mpbid φMNZ=JEMNX-˙Z=JFRE
67 66 simpld φMNZ=JE
68 60 67 oveq12d φMNX-˙YLSSumCMNZ=JFRGLSSumCJE
69 66 simprd φMNX-˙Z=JFRE
70 59 simpld φMNY=JG
71 69 70 oveq12d φMNX-˙ZLSSumCMNY=JFRELSSumCJG
72 68 71 ineq12d φMNX-˙YLSSumCMNZMNX-˙ZLSSumCMNY=JFRGLSSumCJEJFRELSSumCJG
73 52 72 eqtrd φMNX-˙YLSSumUNZMNX-˙ZLSSumUNY=JFRGLSSumCJEJFRELSSumCJG
74 48 73 eqtrd φMNX-˙YLSSumUNZNX-˙ZLSSumUNY=JFRGLSSumCJEJFRELSSumCJG
75 6 7 8 37 9 53 28 22 23 20 21 18 baerlem5a φNX-˙Y+˙Z=NX-˙YLSSumUNZNX-˙ZLSSumUNY
76 75 fveq2d φMNX-˙Y+˙Z=MNX-˙YLSSumUNZNX-˙ZLSSumUNY
77 3 10 14 lcdlvec φCLVec
78 3 4 5 6 9 10 11 13 14 15 16 28 29 57 70 34 64 67 22 mapdindp φ¬FJGE
79 3 4 5 6 9 10 11 13 14 57 70 29 34 64 67 23 mapdncol φJGJE
80 3 4 5 6 9 10 11 13 14 57 70 8 1 20 mapdn0 φGDQ
81 3 4 5 6 9 10 11 13 14 64 67 8 1 21 mapdn0 φEDQ
82 11 12 1 49 13 77 15 78 79 80 81 19 baerlem5a φJFRG˙E=JFRGLSSumCJEJFRELSSumCJG
83 74 76 82 3eqtr4d φMNX-˙Y+˙Z=JFRG˙E