Metamath Proof Explorer


Theorem mapdh6lem2N

Description: Lemma for mapdh6N . Part (6) in Baer p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdhe6.y φYV0˙
mapdhe6.z φZV0˙
mapdhe6.xn φ¬XNYZ
mapdh6.yz φNYNZ
mapdh6.fg φIXFY=G
mapdh6.fe φIXFZ=E
Assertion mapdh6lem2N φMNY+˙Z=JG˙E

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdhe6.y φYV0˙
21 mapdhe6.z φZV0˙
22 mapdhe6.xn φ¬XNYZ
23 mapdh6.yz φNYNZ
24 mapdh6.fg φIXFY=G
25 mapdh6.fe φIXFZ=E
26 eqid LSubSpU=LSubSpU
27 3 5 14 dvhlmod φULMod
28 20 eldifad φYV
29 6 26 9 lspsncl ULModYVNYLSubSpU
30 27 28 29 syl2anc φNYLSubSpU
31 21 eldifad φZV
32 6 26 9 lspsncl ULModZVNZLSubSpU
33 27 31 32 syl2anc φNZLSubSpU
34 eqid LSSumU=LSSumU
35 26 34 lsmcl ULModNYLSubSpUNZLSubSpUNYLSSumUNZLSubSpU
36 27 30 33 35 syl3anc φNYLSSumUNZLSubSpU
37 17 eldifad φXV
38 6 18 lmodvacl ULModYVZVY+˙ZV
39 27 28 31 38 syl3anc φY+˙ZV
40 6 7 lmodvsubcl ULModXVY+˙ZVX-˙Y+˙ZV
41 27 37 39 40 syl3anc φX-˙Y+˙ZV
42 6 26 9 lspsncl ULModX-˙Y+˙ZVNX-˙Y+˙ZLSubSpU
43 27 41 42 syl2anc φNX-˙Y+˙ZLSubSpU
44 6 26 9 lspsncl ULModXVNXLSubSpU
45 27 37 44 syl2anc φNXLSubSpU
46 26 34 lsmcl ULModNX-˙Y+˙ZLSubSpUNXLSubSpUNX-˙Y+˙ZLSSumUNXLSubSpU
47 27 43 45 46 syl3anc φNX-˙Y+˙ZLSSumUNXLSubSpU
48 3 4 5 26 14 36 47 mapdin φMNYLSSumUNZNX-˙Y+˙ZLSSumUNX=MNYLSSumUNZMNX-˙Y+˙ZLSSumUNX
49 eqid LSSumC=LSSumC
50 3 4 5 26 34 10 49 14 30 33 mapdlsm φMNYLSSumUNZ=MNYLSSumCMNZ
51 3 5 14 dvhlvec φULVec
52 6 8 9 51 28 21 37 23 22 lspindp2 φNXNY¬ZNXY
53 52 simpld φNXNY
54 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 53 mapdhcl φIXFYD
55 24 54 eqeltrrd φGD
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 55 53 mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG
57 24 56 mpbid φMNY=JGMNX-˙Y=JFRG
58 57 simpld φMNY=JG
59 6 8 9 51 20 31 37 23 22 lspindp1 φNXNZ¬YNXZ
60 59 simpld φNXNZ
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 60 mapdhcl φIXFZD
62 25 61 eqeltrrd φED
63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 62 60 mapdheq φIXFZ=EMNZ=JEMNX-˙Z=JFRE
64 25 63 mpbid φMNZ=JEMNX-˙Z=JFRE
65 64 simpld φMNZ=JE
66 58 65 oveq12d φMNYLSSumCMNZ=JGLSSumCJE
67 50 66 eqtrd φMNYLSSumUNZ=JGLSSumCJE
68 3 4 5 26 34 10 49 14 43 45 mapdlsm φMNX-˙Y+˙ZLSSumUNX=MNX-˙Y+˙ZLSSumCMNX
69 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6lem1N φMNX-˙Y+˙Z=JFRG˙E
70 69 16 oveq12d φMNX-˙Y+˙ZLSSumCMNX=JFRG˙ELSSumCJF
71 68 70 eqtrd φMNX-˙Y+˙ZLSSumUNX=JFRG˙ELSSumCJF
72 67 71 ineq12d φMNYLSSumUNZMNX-˙Y+˙ZLSSumUNX=JGLSSumCJEJFRG˙ELSSumCJF
73 48 72 eqtrd φMNYLSSumUNZNX-˙Y+˙ZLSSumUNX=JGLSSumCJEJFRG˙ELSSumCJF
74 6 7 8 34 9 51 37 22 23 20 21 18 baerlem5b φNY+˙Z=NYLSSumUNZNX-˙Y+˙ZLSSumUNX
75 74 fveq2d φMNY+˙Z=MNYLSSumUNZNX-˙Y+˙ZLSSumUNX
76 3 10 14 lcdlvec φCLVec
77 3 4 5 6 9 10 11 13 14 15 16 37 28 55 58 31 62 65 22 mapdindp φ¬FJGE
78 3 4 5 6 9 10 11 13 14 55 58 28 31 62 65 23 mapdncol φJGJE
79 3 4 5 6 9 10 11 13 14 55 58 8 1 20 mapdn0 φGDQ
80 3 4 5 6 9 10 11 13 14 62 65 8 1 21 mapdn0 φEDQ
81 11 12 1 49 13 76 15 77 78 79 80 19 baerlem5b φJG˙E=JGLSSumCJEJFRG˙ELSSumCJF
82 73 75 81 3eqtr4d φMNY+˙Z=JG˙E