| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh.q |
|- Q = ( 0g ` C ) |
| 2 |
|
mapdh.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
| 3 |
|
mapdh.h |
|- H = ( LHyp ` K ) |
| 4 |
|
mapdh.m |
|- M = ( ( mapd ` K ) ` W ) |
| 5 |
|
mapdh.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
mapdh.v |
|- V = ( Base ` U ) |
| 7 |
|
mapdh.s |
|- .- = ( -g ` U ) |
| 8 |
|
mapdhc.o |
|- .0. = ( 0g ` U ) |
| 9 |
|
mapdh.n |
|- N = ( LSpan ` U ) |
| 10 |
|
mapdh.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 11 |
|
mapdh.d |
|- D = ( Base ` C ) |
| 12 |
|
mapdh.r |
|- R = ( -g ` C ) |
| 13 |
|
mapdh.j |
|- J = ( LSpan ` C ) |
| 14 |
|
mapdh.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
mapdhc.f |
|- ( ph -> F e. D ) |
| 16 |
|
mapdh.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 17 |
|
mapdhcl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
|
mapdh.p |
|- .+ = ( +g ` U ) |
| 19 |
|
mapdh.a |
|- .+b = ( +g ` C ) |
| 20 |
|
mapdhe6.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 21 |
|
mapdhe6.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 22 |
|
mapdhe6.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
| 23 |
|
mapdh6.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
| 24 |
|
mapdh6.fg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
| 25 |
|
mapdh6.fe |
|- ( ph -> ( I ` <. X , F , Z >. ) = E ) |
| 26 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 27 |
3 5 14
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 28 |
20
|
eldifad |
|- ( ph -> Y e. V ) |
| 29 |
6 26 9
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 30 |
27 28 29
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 31 |
21
|
eldifad |
|- ( ph -> Z e. V ) |
| 32 |
6 26 9
|
lspsncl |
|- ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
| 33 |
27 31 32
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
| 34 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 35 |
26 34
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { Y } ) e. ( LSubSp ` U ) /\ ( N ` { Z } ) e. ( LSubSp ` U ) ) -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
| 36 |
27 30 33 35
|
syl3anc |
|- ( ph -> ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) e. ( LSubSp ` U ) ) |
| 37 |
17
|
eldifad |
|- ( ph -> X e. V ) |
| 38 |
6 18
|
lmodvacl |
|- ( ( U e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V ) |
| 39 |
27 28 31 38
|
syl3anc |
|- ( ph -> ( Y .+ Z ) e. V ) |
| 40 |
6 7
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ ( Y .+ Z ) e. V ) -> ( X .- ( Y .+ Z ) ) e. V ) |
| 41 |
27 37 39 40
|
syl3anc |
|- ( ph -> ( X .- ( Y .+ Z ) ) e. V ) |
| 42 |
6 26 9
|
lspsncl |
|- ( ( U e. LMod /\ ( X .- ( Y .+ Z ) ) e. V ) -> ( N ` { ( X .- ( Y .+ Z ) ) } ) e. ( LSubSp ` U ) ) |
| 43 |
27 41 42
|
syl2anc |
|- ( ph -> ( N ` { ( X .- ( Y .+ Z ) ) } ) e. ( LSubSp ` U ) ) |
| 44 |
6 26 9
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 45 |
27 37 44
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 46 |
26 34
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { ( X .- ( Y .+ Z ) ) } ) e. ( LSubSp ` U ) /\ ( N ` { X } ) e. ( LSubSp ` U ) ) -> ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) e. ( LSubSp ` U ) ) |
| 47 |
27 43 45 46
|
syl3anc |
|- ( ph -> ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) e. ( LSubSp ` U ) ) |
| 48 |
3 4 5 26 14 36 47
|
mapdin |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) = ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) ) |
| 49 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
| 50 |
3 4 5 26 34 10 49 14 30 33
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) |
| 51 |
3 5 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 52 |
6 8 9 51 28 21 37 23 22
|
lspindp2 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) |
| 53 |
52
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 53
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
| 55 |
24 54
|
eqeltrrd |
|- ( ph -> G e. D ) |
| 56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 55 53
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) |
| 57 |
24 56
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) |
| 58 |
57
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
| 59 |
6 8 9 51 20 31 37 23 22
|
lspindp1 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) |
| 60 |
59
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 60
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Z >. ) e. D ) |
| 62 |
25 61
|
eqeltrrd |
|- ( ph -> E e. D ) |
| 63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 62 60
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) ) |
| 64 |
25 63
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) |
| 65 |
64
|
simpld |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( J ` { E } ) ) |
| 66 |
58 65
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
| 67 |
50 66
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
| 68 |
3 4 5 26 34 10 49 14 43 45
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) = ( ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) ( LSSum ` C ) ( M ` ( N ` { X } ) ) ) ) |
| 69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
mapdh6lem1N |
|- ( ph -> ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) = ( J ` { ( F R ( G .+b E ) ) } ) ) |
| 70 |
69 16
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- ( Y .+ Z ) ) } ) ) ( LSSum ` C ) ( M ` ( N ` { X } ) ) ) = ( ( J ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( J ` { F } ) ) ) |
| 71 |
68 70
|
eqtrd |
|- ( ph -> ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) = ( ( J ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( J ` { F } ) ) ) |
| 72 |
67 71
|
ineq12d |
|- ( ph -> ( ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) i^i ( M ` ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( J ` { F } ) ) ) ) |
| 73 |
48 72
|
eqtrd |
|- ( ph -> ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( J ` { F } ) ) ) ) |
| 74 |
6 7 8 34 9 51 37 22 23 20 21 18
|
baerlem5b |
|- ( ph -> ( N ` { ( Y .+ Z ) } ) = ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) |
| 75 |
74
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( M ` ( ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) i^i ( ( N ` { ( X .- ( Y .+ Z ) ) } ) ( LSSum ` U ) ( N ` { X } ) ) ) ) ) |
| 76 |
3 10 14
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 77 |
3 4 5 6 9 10 11 13 14 15 16 37 28 55 58 31 62 65 22
|
mapdindp |
|- ( ph -> -. F e. ( J ` { G , E } ) ) |
| 78 |
3 4 5 6 9 10 11 13 14 55 58 28 31 62 65 23
|
mapdncol |
|- ( ph -> ( J ` { G } ) =/= ( J ` { E } ) ) |
| 79 |
3 4 5 6 9 10 11 13 14 55 58 8 1 20
|
mapdn0 |
|- ( ph -> G e. ( D \ { Q } ) ) |
| 80 |
3 4 5 6 9 10 11 13 14 62 65 8 1 21
|
mapdn0 |
|- ( ph -> E e. ( D \ { Q } ) ) |
| 81 |
11 12 1 49 13 76 15 77 78 79 80 19
|
baerlem5b |
|- ( ph -> ( J ` { ( G .+b E ) } ) = ( ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) i^i ( ( J ` { ( F R ( G .+b E ) ) } ) ( LSSum ` C ) ( J ` { F } ) ) ) ) |
| 82 |
73 75 81
|
3eqtr4d |
|- ( ph -> ( M ` ( N ` { ( Y .+ Z ) } ) ) = ( J ` { ( G .+b E ) } ) ) |