Metamath Proof Explorer


Theorem mapdh6N

Description: Part (6) of Baer p. 47 line 6. Note that we use -. X e. ( N{ Y , Z } ) which is equivalent to Baer's "Fx i^i (Fy + Fz)" by lspdisjb . TODO: If disjoint variable conditions with I and ph become a problem later, use cbv* theorems on I variables here to get rid of them. Maybe reorder hypotheses in lemmas to the more consistent order of this theorem, so they can be shared with this theorem. TODO: may be deleted (with its lemmas), if not needed, in view of hdmap1l6 . (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh6.h
|- H = ( LHyp ` K )
mapdh6.u
|- U = ( ( DVecH ` K ) ` W )
mapdh6.v
|- V = ( Base ` U )
mapdh6.p
|- .+ = ( +g ` U )
mapdh6.s
|- .- = ( -g ` U )
mapdh6.o
|- .0. = ( 0g ` U )
mapdh6.n
|- N = ( LSpan ` U )
mapdh6.c
|- C = ( ( LCDual ` K ) ` W )
mapdh6.d
|- D = ( Base ` C )
mapdh6.a
|- .+b = ( +g ` C )
mapdh6.r
|- R = ( -g ` C )
mapdh6.q
|- Q = ( 0g ` C )
mapdh6.j
|- J = ( LSpan ` C )
mapdh6.m
|- M = ( ( mapd ` K ) ` W )
mapdh6.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdh6.f
|- ( ph -> F e. D )
mapdh6.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdh6.y
|- ( ph -> Y e. V )
mapdh6.z
|- ( ph -> Z e. V )
mapdh6.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
mapdh6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
Assertion mapdh6N
|- ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )

Proof

Step Hyp Ref Expression
1 mapdh6.h
 |-  H = ( LHyp ` K )
2 mapdh6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdh6.v
 |-  V = ( Base ` U )
4 mapdh6.p
 |-  .+ = ( +g ` U )
5 mapdh6.s
 |-  .- = ( -g ` U )
6 mapdh6.o
 |-  .0. = ( 0g ` U )
7 mapdh6.n
 |-  N = ( LSpan ` U )
8 mapdh6.c
 |-  C = ( ( LCDual ` K ) ` W )
9 mapdh6.d
 |-  D = ( Base ` C )
10 mapdh6.a
 |-  .+b = ( +g ` C )
11 mapdh6.r
 |-  R = ( -g ` C )
12 mapdh6.q
 |-  Q = ( 0g ` C )
13 mapdh6.j
 |-  J = ( LSpan ` C )
14 mapdh6.m
 |-  M = ( ( mapd ` K ) ` W )
15 mapdh6.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
16 mapdh6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 mapdh6.f
 |-  ( ph -> F e. D )
18 mapdh6.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 mapdh6.y
 |-  ( ph -> Y e. V )
20 mapdh6.z
 |-  ( ph -> Z e. V )
21 mapdh6.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
22 mapdh6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
23 12 15 1 14 2 3 5 6 7 8 9 11 13 16 17 22 18 4 10 19 20 21 mapdh6kN
 |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )