Metamath Proof Explorer


Theorem mapdh6N

Description: Part (6) of Baer p. 47 line 6. Note that we use -. X e. ( N{ Y , Z } ) which is equivalent to Baer's "Fx i^i (Fy + Fz)" by lspdisjb . TODO: If disjoint variable conditions with I and ph become a problem later, use cbv* theorems on I variables here to get rid of them. Maybe reorder hypotheses in lemmas to the more consistent order of this theorem, so they can be shared with this theorem. TODO: may be deleted (with its lemmas), if not needed, in view of hdmap1l6 . (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh6.h H = LHyp K
mapdh6.u U = DVecH K W
mapdh6.v V = Base U
mapdh6.p + ˙ = + U
mapdh6.s - ˙ = - U
mapdh6.o 0 ˙ = 0 U
mapdh6.n N = LSpan U
mapdh6.c C = LCDual K W
mapdh6.d D = Base C
mapdh6.a ˙ = + C
mapdh6.r R = - C
mapdh6.q Q = 0 C
mapdh6.j J = LSpan C
mapdh6.m M = mapd K W
mapdh6.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh6.k φ K HL W H
mapdh6.f φ F D
mapdh6.x φ X V 0 ˙
mapdh6.y φ Y V
mapdh6.z φ Z V
mapdh6.xn φ ¬ X N Y Z
mapdh6.mn φ M N X = J F
Assertion mapdh6N φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 mapdh6.h H = LHyp K
2 mapdh6.u U = DVecH K W
3 mapdh6.v V = Base U
4 mapdh6.p + ˙ = + U
5 mapdh6.s - ˙ = - U
6 mapdh6.o 0 ˙ = 0 U
7 mapdh6.n N = LSpan U
8 mapdh6.c C = LCDual K W
9 mapdh6.d D = Base C
10 mapdh6.a ˙ = + C
11 mapdh6.r R = - C
12 mapdh6.q Q = 0 C
13 mapdh6.j J = LSpan C
14 mapdh6.m M = mapd K W
15 mapdh6.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
16 mapdh6.k φ K HL W H
17 mapdh6.f φ F D
18 mapdh6.x φ X V 0 ˙
19 mapdh6.y φ Y V
20 mapdh6.z φ Z V
21 mapdh6.xn φ ¬ X N Y Z
22 mapdh6.mn φ M N X = J F
23 12 15 1 14 2 3 5 6 7 8 9 11 13 16 17 22 18 4 10 19 20 21 mapdh6kN φ I X F Y + ˙ Z = I X F Y ˙ I X F Z