Metamath Proof Explorer


Theorem hdmap1l6

Description: Part (6) of Baer p. 47 line 6. Note that we use -. X e. ( N{ Y , Z } ) which is equivalent to Baer's "Fx i^i (Fy + Fz)" by lspdisjb . (Convert mapdh6N to use the function HDMap1 .) (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap1-6.h H=LHypK
hdmap1-6.u U=DVecHKW
hdmap1-6.v V=BaseU
hdmap1-6.p +˙=+U
hdmap1-6.o 0˙=0U
hdmap1-6.n N=LSpanU
hdmap1-6.c C=LCDualKW
hdmap1-6.d D=BaseC
hdmap1-6.a ˙=+C
hdmap1-6.l L=LSpanC
hdmap1-6.m M=mapdKW
hdmap1-6.i I=HDMap1KW
hdmap1-6.k φKHLWH
hdmap1-6.f φFD
hdmap1-6.x φXV0˙
hdmap1-6.y φYV
hdmap1-6.z φZV
hdmap1-6.xn φ¬XNYZ
hdmap1-6.mn φMNX=LF
Assertion hdmap1l6 φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 hdmap1-6.h H=LHypK
2 hdmap1-6.u U=DVecHKW
3 hdmap1-6.v V=BaseU
4 hdmap1-6.p +˙=+U
5 hdmap1-6.o 0˙=0U
6 hdmap1-6.n N=LSpanU
7 hdmap1-6.c C=LCDualKW
8 hdmap1-6.d D=BaseC
9 hdmap1-6.a ˙=+C
10 hdmap1-6.l L=LSpanC
11 hdmap1-6.m M=mapdKW
12 hdmap1-6.i I=HDMap1KW
13 hdmap1-6.k φKHLWH
14 hdmap1-6.f φFD
15 hdmap1-6.x φXV0˙
16 hdmap1-6.y φYV
17 hdmap1-6.z φZV
18 hdmap1-6.xn φ¬XNYZ
19 hdmap1-6.mn φMNX=LF
20 eqid -U=-U
21 eqid -C=-C
22 eqid 0C=0C
23 1 2 3 4 20 5 6 7 8 9 21 22 10 11 12 13 14 15 19 16 17 18 hdmap1l6k φIXFY+˙Z=IXFY˙IXFZ