Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hdmap1l6
Metamath Proof Explorer
Description: Part (6) of Baer p. 47 line 6. Note that we use
-. X e. ( N { Y , Z } ) which is equivalent to Baer's "Fx i^i
(Fy + Fz)" by lspdisjb . (Convert mapdh6N to use the function
HDMap1 .) (Contributed by NM , 17-May-2015)
Ref
Expression
Hypotheses
hdmap1-6.h
hdmap1-6.u
hdmap1-6.v
hdmap1-6.p
hdmap1-6.o
hdmap1-6.n
hdmap1-6.c
hdmap1-6.d
hdmap1-6.a
hdmap1-6.l
hdmap1-6.m
hdmap1-6.i
hdmap1-6.k
hdmap1-6.f
hdmap1-6.x
hdmap1-6.y
hdmap1-6.z
hdmap1-6.xn
hdmap1-6.mn
Assertion
hdmap1l6
Proof
Step
Hyp
Ref
Expression
1
hdmap1-6.h
2
hdmap1-6.u
3
hdmap1-6.v
4
hdmap1-6.p
5
hdmap1-6.o
6
hdmap1-6.n
7
hdmap1-6.c
8
hdmap1-6.d
9
hdmap1-6.a
10
hdmap1-6.l
11
hdmap1-6.m
12
hdmap1-6.i
13
hdmap1-6.k
14
hdmap1-6.f
15
hdmap1-6.x
16
hdmap1-6.y
17
hdmap1-6.z
18
hdmap1-6.xn
19
hdmap1-6.mn
20
eqid
21
eqid
22
eqid
23
1 2 3 4 20 5 6 7 8 9 21 22 10 11 12 13 14 15 19 16 17 18
hdmap1l6k