Metamath Proof Explorer


Theorem hdmap1l6

Description: Part (6) of Baer p. 47 line 6. Note that we use -. X e. ( N{ Y , Z } ) which is equivalent to Baer's "Fx i^i (Fy + Fz)" by lspdisjb . (Convert mapdh6N to use the function HDMap1 .) (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap1-6.h
|- H = ( LHyp ` K )
hdmap1-6.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1-6.v
|- V = ( Base ` U )
hdmap1-6.p
|- .+ = ( +g ` U )
hdmap1-6.o
|- .0. = ( 0g ` U )
hdmap1-6.n
|- N = ( LSpan ` U )
hdmap1-6.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1-6.d
|- D = ( Base ` C )
hdmap1-6.a
|- .+b = ( +g ` C )
hdmap1-6.l
|- L = ( LSpan ` C )
hdmap1-6.m
|- M = ( ( mapd ` K ) ` W )
hdmap1-6.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1-6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1-6.f
|- ( ph -> F e. D )
hdmap1-6.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1-6.y
|- ( ph -> Y e. V )
hdmap1-6.z
|- ( ph -> Z e. V )
hdmap1-6.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
hdmap1-6.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
Assertion hdmap1l6
|- ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1-6.h
 |-  H = ( LHyp ` K )
2 hdmap1-6.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1-6.v
 |-  V = ( Base ` U )
4 hdmap1-6.p
 |-  .+ = ( +g ` U )
5 hdmap1-6.o
 |-  .0. = ( 0g ` U )
6 hdmap1-6.n
 |-  N = ( LSpan ` U )
7 hdmap1-6.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap1-6.d
 |-  D = ( Base ` C )
9 hdmap1-6.a
 |-  .+b = ( +g ` C )
10 hdmap1-6.l
 |-  L = ( LSpan ` C )
11 hdmap1-6.m
 |-  M = ( ( mapd ` K ) ` W )
12 hdmap1-6.i
 |-  I = ( ( HDMap1 ` K ) ` W )
13 hdmap1-6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
14 hdmap1-6.f
 |-  ( ph -> F e. D )
15 hdmap1-6.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
16 hdmap1-6.y
 |-  ( ph -> Y e. V )
17 hdmap1-6.z
 |-  ( ph -> Z e. V )
18 hdmap1-6.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
19 hdmap1-6.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( L ` { F } ) )
20 eqid
 |-  ( -g ` U ) = ( -g ` U )
21 eqid
 |-  ( -g ` C ) = ( -g ` C )
22 eqid
 |-  ( 0g ` C ) = ( 0g ` C )
23 1 2 3 4 20 5 6 7 8 9 21 22 10 11 12 13 14 15 19 16 17 18 hdmap1l6k
 |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )