Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1eulem.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmap1eulem.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmap1eulem.v |
|- V = ( Base ` U ) |
4 |
|
hdmap1eulem.s |
|- .- = ( -g ` U ) |
5 |
|
hdmap1eulem.o |
|- .0. = ( 0g ` U ) |
6 |
|
hdmap1eulem.n |
|- N = ( LSpan ` U ) |
7 |
|
hdmap1eulem.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hdmap1eulem.d |
|- D = ( Base ` C ) |
9 |
|
hdmap1eulem.r |
|- R = ( -g ` C ) |
10 |
|
hdmap1eulem.q |
|- Q = ( 0g ` C ) |
11 |
|
hdmap1eulem.j |
|- J = ( LSpan ` C ) |
12 |
|
hdmap1eulem.m |
|- M = ( ( mapd ` K ) ` W ) |
13 |
|
hdmap1eulem.i |
|- I = ( ( HDMap1 ` K ) ` W ) |
14 |
|
hdmap1eulem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
15 |
|
hdmap1eulem.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
16 |
|
hdmap1eulem.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
17 |
|
hdmap1eulem.f |
|- ( ph -> F e. D ) |
18 |
|
hdmap1eulem.y |
|- ( ph -> T e. V ) |
19 |
|
hdmap1eulem.l |
|- L = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18
|
mapdh9a |
|- ( ph -> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) |
21 |
14
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( K e. HL /\ W e. H ) ) |
22 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> X e. ( V \ { .0. } ) ) |
23 |
17
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> F e. D ) |
24 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> z e. V ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19
|
hdmap1valc |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. X , F , z >. ) = ( L ` <. X , F , z >. ) ) |
26 |
25
|
oteq2d |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> <. z , ( I ` <. X , F , z >. ) , T >. = <. z , ( L ` <. X , F , z >. ) , T >. ) |
27 |
26
|
fveq2d |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) |
28 |
|
elun1 |
|- ( z e. ( N ` { X } ) -> z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) |
29 |
28
|
con3i |
|- ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> -. z e. ( N ` { X } ) ) |
30 |
14
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( K e. HL /\ W e. H ) ) |
31 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
32 |
1 2 14
|
dvhlmod |
|- ( ph -> U e. LMod ) |
33 |
32
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> U e. LMod ) |
34 |
16
|
eldifad |
|- ( ph -> X e. V ) |
35 |
34
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> X e. V ) |
36 |
3 31 6
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
37 |
33 35 36
|
syl2anc |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
38 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> z e. V ) |
39 |
|
simpr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> -. z e. ( N ` { X } ) ) |
40 |
5 31 33 37 38 39
|
lssneln0 |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> z e. ( V \ { .0. } ) ) |
41 |
17
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> F e. D ) |
42 |
15
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
43 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> X e. ( V \ { .0. } ) ) |
44 |
3 6 33 38 35 39
|
lspsnne2 |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) |
45 |
44
|
necomd |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { X } ) =/= ( N ` { z } ) ) |
46 |
10 19 1 12 2 3 4 5 6 7 8 9 11 30 41 42 43 38 45
|
mapdhcl |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( L ` <. X , F , z >. ) e. D ) |
47 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> T e. V ) |
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 30 40 46 47 19
|
hdmap1valc |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( I ` <. z , ( L ` <. X , F , z >. ) , T >. ) = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) |
49 |
29 48
|
sylan2 |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. z , ( L ` <. X , F , z >. ) , T >. ) = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) |
50 |
27 49
|
eqtrd |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) |
51 |
50
|
eqeq2d |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) <-> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) |
52 |
51
|
pm5.74da |
|- ( ( ph /\ z e. V ) -> ( ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) ) |
53 |
52
|
ralbidva |
|- ( ph -> ( A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) ) |
54 |
53
|
reubidv |
|- ( ph -> ( E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) ) |
55 |
20 54
|
mpbird |
|- ( ph -> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) |