Metamath Proof Explorer


Theorem hdmap1eulem

Description: Lemma for hdmap1eu . TODO: combine with hdmap1eu or at least share some hypotheses. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1eulem.h
|- H = ( LHyp ` K )
hdmap1eulem.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1eulem.v
|- V = ( Base ` U )
hdmap1eulem.s
|- .- = ( -g ` U )
hdmap1eulem.o
|- .0. = ( 0g ` U )
hdmap1eulem.n
|- N = ( LSpan ` U )
hdmap1eulem.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1eulem.d
|- D = ( Base ` C )
hdmap1eulem.r
|- R = ( -g ` C )
hdmap1eulem.q
|- Q = ( 0g ` C )
hdmap1eulem.j
|- J = ( LSpan ` C )
hdmap1eulem.m
|- M = ( ( mapd ` K ) ` W )
hdmap1eulem.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1eulem.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1eulem.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
hdmap1eulem.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1eulem.f
|- ( ph -> F e. D )
hdmap1eulem.y
|- ( ph -> T e. V )
hdmap1eulem.l
|- L = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
Assertion hdmap1eulem
|- ( ph -> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) )

Proof

Step Hyp Ref Expression
1 hdmap1eulem.h
 |-  H = ( LHyp ` K )
2 hdmap1eulem.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1eulem.v
 |-  V = ( Base ` U )
4 hdmap1eulem.s
 |-  .- = ( -g ` U )
5 hdmap1eulem.o
 |-  .0. = ( 0g ` U )
6 hdmap1eulem.n
 |-  N = ( LSpan ` U )
7 hdmap1eulem.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap1eulem.d
 |-  D = ( Base ` C )
9 hdmap1eulem.r
 |-  R = ( -g ` C )
10 hdmap1eulem.q
 |-  Q = ( 0g ` C )
11 hdmap1eulem.j
 |-  J = ( LSpan ` C )
12 hdmap1eulem.m
 |-  M = ( ( mapd ` K ) ` W )
13 hdmap1eulem.i
 |-  I = ( ( HDMap1 ` K ) ` W )
14 hdmap1eulem.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 hdmap1eulem.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
16 hdmap1eulem.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
17 hdmap1eulem.f
 |-  ( ph -> F e. D )
18 hdmap1eulem.y
 |-  ( ph -> T e. V )
19 hdmap1eulem.l
 |-  L = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
20 1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18 mapdh9a
 |-  ( ph -> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) )
21 14 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( K e. HL /\ W e. H ) )
22 16 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> X e. ( V \ { .0. } ) )
23 17 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> F e. D )
24 simplr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> z e. V )
25 1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19 hdmap1valc
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. X , F , z >. ) = ( L ` <. X , F , z >. ) )
26 25 oteq2d
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> <. z , ( I ` <. X , F , z >. ) , T >. = <. z , ( L ` <. X , F , z >. ) , T >. )
27 26 fveq2d
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. z , ( L ` <. X , F , z >. ) , T >. ) )
28 elun1
 |-  ( z e. ( N ` { X } ) -> z e. ( ( N ` { X } ) u. ( N ` { T } ) ) )
29 28 con3i
 |-  ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> -. z e. ( N ` { X } ) )
30 14 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( K e. HL /\ W e. H ) )
31 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
32 1 2 14 dvhlmod
 |-  ( ph -> U e. LMod )
33 32 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> U e. LMod )
34 16 eldifad
 |-  ( ph -> X e. V )
35 34 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> X e. V )
36 3 31 6 lspsncl
 |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) )
37 33 35 36 syl2anc
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { X } ) e. ( LSubSp ` U ) )
38 simplr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> z e. V )
39 simpr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> -. z e. ( N ` { X } ) )
40 5 31 33 37 38 39 lssneln0
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> z e. ( V \ { .0. } ) )
41 17 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> F e. D )
42 15 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
43 16 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> X e. ( V \ { .0. } ) )
44 3 6 33 38 35 39 lspsnne2
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { z } ) =/= ( N ` { X } ) )
45 44 necomd
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { X } ) =/= ( N ` { z } ) )
46 10 19 1 12 2 3 4 5 6 7 8 9 11 30 41 42 43 38 45 mapdhcl
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( L ` <. X , F , z >. ) e. D )
47 18 ad2antrr
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> T e. V )
48 1 2 3 4 5 6 7 8 9 10 11 12 13 30 40 46 47 19 hdmap1valc
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( I ` <. z , ( L ` <. X , F , z >. ) , T >. ) = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) )
49 29 48 sylan2
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. z , ( L ` <. X , F , z >. ) , T >. ) = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) )
50 27 49 eqtrd
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) )
51 50 eqeq2d
 |-  ( ( ( ph /\ z e. V ) /\ -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) -> ( y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) <-> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) )
52 51 pm5.74da
 |-  ( ( ph /\ z e. V ) -> ( ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) )
53 52 ralbidva
 |-  ( ph -> ( A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) )
54 53 reubidv
 |-  ( ph -> ( E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( L ` <. z , ( L ` <. X , F , z >. ) , T >. ) ) ) )
55 20 54 mpbird
 |-  ( ph -> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) )