| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh8a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdh8a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdh8a.v |
|- V = ( Base ` U ) |
| 4 |
|
mapdh8a.s |
|- .- = ( -g ` U ) |
| 5 |
|
mapdh8a.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
mapdh8a.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdh8a.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdh8a.d |
|- D = ( Base ` C ) |
| 9 |
|
mapdh8a.r |
|- R = ( -g ` C ) |
| 10 |
|
mapdh8a.q |
|- Q = ( 0g ` C ) |
| 11 |
|
mapdh8a.j |
|- J = ( LSpan ` C ) |
| 12 |
|
mapdh8a.m |
|- M = ( ( mapd ` K ) ` W ) |
| 13 |
|
mapdh8a.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
| 14 |
|
mapdh8a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
mapdh8h.f |
|- ( ph -> F e. D ) |
| 16 |
|
mapdh8h.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 17 |
|
mapdh9a.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
|
mapdh9a.t |
|- ( ph -> T e. V ) |
| 19 |
14
|
3ad2ant1 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 20 |
15
|
3ad2ant1 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> F e. D ) |
| 21 |
16
|
3ad2ant1 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 22 |
17
|
3ad2ant1 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> X e. ( V \ { .0. } ) ) |
| 23 |
|
simp3ll |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> z e. ( V \ { .0. } ) ) |
| 24 |
|
simp3rl |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> w e. ( V \ { .0. } ) ) |
| 25 |
|
simplrl |
|- ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) |
| 26 |
25
|
3ad2ant3 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) |
| 27 |
26
|
necomd |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( N ` { X } ) =/= ( N ` { z } ) ) |
| 28 |
|
simprrl |
|- ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { w } ) =/= ( N ` { X } ) ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( N ` { w } ) =/= ( N ` { X } ) ) |
| 30 |
29
|
necomd |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( N ` { X } ) =/= ( N ` { w } ) ) |
| 31 |
|
simplrr |
|- ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { z } ) =/= ( N ` { T } ) ) |
| 32 |
31
|
3ad2ant3 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( N ` { z } ) =/= ( N ` { T } ) ) |
| 33 |
|
simprrr |
|- ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { w } ) =/= ( N ` { T } ) ) |
| 34 |
33
|
3ad2ant3 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( N ` { w } ) =/= ( N ` { T } ) ) |
| 35 |
18
|
3ad2ant1 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> T e. V ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 27 30 32 34 35
|
mapdh8 |
|- ( ( ph /\ ( z e. V /\ w e. V ) /\ ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) ) |
| 37 |
36
|
3exp |
|- ( ph -> ( ( z e. V /\ w e. V ) -> ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) ) ) ) |
| 38 |
37
|
ralrimivv |
|- ( ph -> A. z e. V A. w e. V ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) ) ) |
| 39 |
17
|
eldifad |
|- ( ph -> X e. V ) |
| 40 |
1 2 3 6 14 39 18
|
dvh3dim |
|- ( ph -> E. z e. V -. z e. ( N ` { X , T } ) ) |
| 41 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 42 |
1 2 14
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> U e. LMod ) |
| 44 |
3 41 6 42 39 18
|
lspprcl |
|- ( ph -> ( N ` { X , T } ) e. ( LSubSp ` U ) ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> ( N ` { X , T } ) e. ( LSubSp ` U ) ) |
| 46 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> z e. V ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> -. z e. ( N ` { X , T } ) ) |
| 48 |
5 41 43 45 46 47
|
lssneln0 |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> z e. ( V \ { .0. } ) ) |
| 49 |
1 2 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 50 |
49
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> U e. LVec ) |
| 51 |
39
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> X e. V ) |
| 52 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> T e. V ) |
| 53 |
3 6 50 46 51 52 47
|
lspindpi |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) |
| 54 |
48 53
|
jca |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X , T } ) ) -> ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) |
| 55 |
54
|
ex |
|- ( ( ph /\ z e. V ) -> ( -. z e. ( N ` { X , T } ) -> ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) ) |
| 56 |
55
|
reximdva |
|- ( ph -> ( E. z e. V -. z e. ( N ` { X , T } ) -> E. z e. V ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) ) |
| 57 |
40 56
|
mpd |
|- ( ph -> E. z e. V ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) |
| 58 |
14
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 59 |
15
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> F e. D ) |
| 60 |
16
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 61 |
17
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> X e. ( V \ { .0. } ) ) |
| 62 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> z e. V ) |
| 63 |
|
simprrl |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) |
| 64 |
63
|
necomd |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { X } ) =/= ( N ` { z } ) ) |
| 65 |
10 13 1 12 2 3 4 5 6 7 8 9 11 58 59 60 61 62 64
|
mapdhcl |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. X , F , z >. ) e. D ) |
| 66 |
|
eqidd |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. X , F , z >. ) = ( I ` <. X , F , z >. ) ) |
| 67 |
|
simprl |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> z e. ( V \ { .0. } ) ) |
| 68 |
10 13 1 12 2 3 4 5 6 7 8 9 11 58 59 60 61 67 65 64
|
mapdheq |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( ( I ` <. X , F , z >. ) = ( I ` <. X , F , z >. ) <-> ( ( M ` ( N ` { z } ) ) = ( J ` { ( I ` <. X , F , z >. ) } ) /\ ( M ` ( N ` { ( X .- z ) } ) ) = ( J ` { ( F R ( I ` <. X , F , z >. ) ) } ) ) ) ) |
| 69 |
66 68
|
mpbid |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( ( M ` ( N ` { z } ) ) = ( J ` { ( I ` <. X , F , z >. ) } ) /\ ( M ` ( N ` { ( X .- z ) } ) ) = ( J ` { ( F R ( I ` <. X , F , z >. ) ) } ) ) ) |
| 70 |
69
|
simpld |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( M ` ( N ` { z } ) ) = ( J ` { ( I ` <. X , F , z >. ) } ) ) |
| 71 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> T e. V ) |
| 72 |
|
simprrr |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( N ` { z } ) =/= ( N ` { T } ) ) |
| 73 |
10 13 1 12 2 3 4 5 6 7 8 9 11 58 65 70 67 71 72
|
mapdhcl |
|- ( ( ( ph /\ z e. V ) /\ ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) e. D ) |
| 74 |
73
|
ex |
|- ( ( ph /\ z e. V ) -> ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) e. D ) ) |
| 75 |
74
|
ancld |
|- ( ( ph /\ z e. V ) -> ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) e. D ) ) ) |
| 76 |
75
|
reximdva |
|- ( ph -> ( E. z e. V ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> E. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) e. D ) ) ) |
| 77 |
57 76
|
mpd |
|- ( ph -> E. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) e. D ) ) |
| 78 |
|
eleq1w |
|- ( z = w -> ( z e. ( V \ { .0. } ) <-> w e. ( V \ { .0. } ) ) ) |
| 79 |
|
sneq |
|- ( z = w -> { z } = { w } ) |
| 80 |
79
|
fveq2d |
|- ( z = w -> ( N ` { z } ) = ( N ` { w } ) ) |
| 81 |
80
|
neeq1d |
|- ( z = w -> ( ( N ` { z } ) =/= ( N ` { X } ) <-> ( N ` { w } ) =/= ( N ` { X } ) ) ) |
| 82 |
80
|
neeq1d |
|- ( z = w -> ( ( N ` { z } ) =/= ( N ` { T } ) <-> ( N ` { w } ) =/= ( N ` { T } ) ) ) |
| 83 |
81 82
|
anbi12d |
|- ( z = w -> ( ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) <-> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) |
| 84 |
78 83
|
anbi12d |
|- ( z = w -> ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) <-> ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) ) |
| 85 |
|
oteq1 |
|- ( z = w -> <. z , ( I ` <. X , F , z >. ) , T >. = <. w , ( I ` <. X , F , z >. ) , T >. ) |
| 86 |
|
oteq3 |
|- ( z = w -> <. X , F , z >. = <. X , F , w >. ) |
| 87 |
86
|
fveq2d |
|- ( z = w -> ( I ` <. X , F , z >. ) = ( I ` <. X , F , w >. ) ) |
| 88 |
87
|
oteq2d |
|- ( z = w -> <. w , ( I ` <. X , F , z >. ) , T >. = <. w , ( I ` <. X , F , w >. ) , T >. ) |
| 89 |
85 88
|
eqtrd |
|- ( z = w -> <. z , ( I ` <. X , F , z >. ) , T >. = <. w , ( I ` <. X , F , w >. ) , T >. ) |
| 90 |
89
|
fveq2d |
|- ( z = w -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) ) |
| 91 |
84 90
|
reusv3 |
|- ( E. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) e. D ) -> ( A. z e. V A. w e. V ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) ) <-> E. y e. D A. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 92 |
77 91
|
syl |
|- ( ph -> ( A. z e. V A. w e. V ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) /\ ( w e. ( V \ { .0. } ) /\ ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { T } ) ) ) ) -> ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) = ( I ` <. w , ( I ` <. X , F , w >. ) , T >. ) ) <-> E. y e. D A. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 93 |
38 92
|
mpbid |
|- ( ph -> E. y e. D A. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) |
| 94 |
|
ioran |
|- ( -. ( z e. ( N ` { X } ) \/ z e. ( N ` { T } ) ) <-> ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) |
| 95 |
|
elun |
|- ( z e. ( ( N ` { X } ) u. ( N ` { T } ) ) <-> ( z e. ( N ` { X } ) \/ z e. ( N ` { T } ) ) ) |
| 96 |
94 95
|
xchnxbir |
|- ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) <-> ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) |
| 97 |
42
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) -> U e. LMod ) |
| 98 |
3 41 6
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 99 |
42 39 98
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 101 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) -> z e. V ) |
| 102 |
|
simprl |
|- ( ( ( ph /\ z e. V ) /\ ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) -> -. z e. ( N ` { X } ) ) |
| 103 |
5 41 97 100 101 102
|
lssneln0 |
|- ( ( ( ph /\ z e. V ) /\ ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) ) -> z e. ( V \ { .0. } ) ) |
| 104 |
103
|
ex |
|- ( ( ph /\ z e. V ) -> ( ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) -> z e. ( V \ { .0. } ) ) ) |
| 105 |
42
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> U e. LMod ) |
| 106 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> z e. V ) |
| 107 |
39
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> X e. V ) |
| 108 |
|
simpr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> -. z e. ( N ` { X } ) ) |
| 109 |
3 6 105 106 107 108
|
lspsnne2 |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { X } ) ) -> ( N ` { z } ) =/= ( N ` { X } ) ) |
| 110 |
109
|
ex |
|- ( ( ph /\ z e. V ) -> ( -. z e. ( N ` { X } ) -> ( N ` { z } ) =/= ( N ` { X } ) ) ) |
| 111 |
42
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { T } ) ) -> U e. LMod ) |
| 112 |
|
simplr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { T } ) ) -> z e. V ) |
| 113 |
18
|
ad2antrr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { T } ) ) -> T e. V ) |
| 114 |
|
simpr |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { T } ) ) -> -. z e. ( N ` { T } ) ) |
| 115 |
3 6 111 112 113 114
|
lspsnne2 |
|- ( ( ( ph /\ z e. V ) /\ -. z e. ( N ` { T } ) ) -> ( N ` { z } ) =/= ( N ` { T } ) ) |
| 116 |
115
|
ex |
|- ( ( ph /\ z e. V ) -> ( -. z e. ( N ` { T } ) -> ( N ` { z } ) =/= ( N ` { T } ) ) ) |
| 117 |
110 116
|
anim12d |
|- ( ( ph /\ z e. V ) -> ( ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) -> ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) |
| 118 |
104 117
|
jcad |
|- ( ( ph /\ z e. V ) -> ( ( -. z e. ( N ` { X } ) /\ -. z e. ( N ` { T } ) ) -> ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) ) |
| 119 |
96 118
|
biimtrid |
|- ( ( ph /\ z e. V ) -> ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) ) ) |
| 120 |
119
|
imim1d |
|- ( ( ph /\ z e. V ) -> ( ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) -> ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 121 |
120
|
ralimdva |
|- ( ph -> ( A. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) -> A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 122 |
121
|
reximdv |
|- ( ph -> ( E. y e. D A. z e. V ( ( z e. ( V \ { .0. } ) /\ ( ( N ` { z } ) =/= ( N ` { X } ) /\ ( N ` { z } ) =/= ( N ` { T } ) ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) -> E. y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 123 |
93 122
|
mpd |
|- ( ph -> E. y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) |
| 124 |
3 6 42 39 18
|
lspprid1 |
|- ( ph -> X e. ( N ` { X , T } ) ) |
| 125 |
41 6 42 44 124
|
ellspsn5 |
|- ( ph -> ( N ` { X } ) C_ ( N ` { X , T } ) ) |
| 126 |
3 6 42 39 18
|
lspprid2 |
|- ( ph -> T e. ( N ` { X , T } ) ) |
| 127 |
41 6 42 44 126
|
ellspsn5 |
|- ( ph -> ( N ` { T } ) C_ ( N ` { X , T } ) ) |
| 128 |
125 127
|
unssd |
|- ( ph -> ( ( N ` { X } ) u. ( N ` { T } ) ) C_ ( N ` { X , T } ) ) |
| 129 |
128
|
ssneld |
|- ( ph -> ( -. z e. ( N ` { X , T } ) -> -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) ) |
| 130 |
129
|
reximdv |
|- ( ph -> ( E. z e. V -. z e. ( N ` { X , T } ) -> E. z e. V -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) ) |
| 131 |
40 130
|
mpd |
|- ( ph -> E. z e. V -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) ) |
| 132 |
|
reusv1 |
|- ( E. z e. V -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> ( E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> E. y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 133 |
131 132
|
syl |
|- ( ph -> ( E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) <-> E. y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) ) |
| 134 |
123 133
|
mpbird |
|- ( ph -> E! y e. D A. z e. V ( -. z e. ( ( N ` { X } ) u. ( N ` { T } ) ) -> y = ( I ` <. z , ( I ` <. X , F , z >. ) , T >. ) ) ) |