Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
|- H = ( LHyp ` K ) |
2 |
|
dvh3dim.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dvh3dim.v |
|- V = ( Base ` U ) |
4 |
|
dvh3dim.n |
|- N = ( LSpan ` U ) |
5 |
|
dvh3dim.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
dvh3dim.x |
|- ( ph -> X e. V ) |
7 |
|
dvh3dim.y |
|- ( ph -> Y e. V ) |
8 |
1 2 3 4 5 7
|
dvh2dim |
|- ( ph -> E. z e. V -. z e. ( N ` { Y } ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { Y } ) ) |
10 |
|
prcom |
|- { X , Y } = { Y , X } |
11 |
|
preq2 |
|- ( X = ( 0g ` U ) -> { Y , X } = { Y , ( 0g ` U ) } ) |
12 |
10 11
|
syl5eq |
|- ( X = ( 0g ` U ) -> { X , Y } = { Y , ( 0g ` U ) } ) |
13 |
12
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( N ` { X , Y } ) = ( N ` { Y , ( 0g ` U ) } ) ) |
14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
15 |
1 2 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
16 |
3 14 4 15 7
|
lsppr0 |
|- ( ph -> ( N ` { Y , ( 0g ` U ) } ) = ( N ` { Y } ) ) |
17 |
13 16
|
sylan9eqr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { X , Y } ) = ( N ` { Y } ) ) |
18 |
17
|
eleq2d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( z e. ( N ` { X , Y } ) <-> z e. ( N ` { Y } ) ) ) |
19 |
18
|
notbid |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( -. z e. ( N ` { X , Y } ) <-> -. z e. ( N ` { Y } ) ) ) |
20 |
19
|
rexbidv |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( E. z e. V -. z e. ( N ` { X , Y } ) <-> E. z e. V -. z e. ( N ` { Y } ) ) ) |
21 |
9 20
|
mpbird |
|- ( ( ph /\ X = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Y } ) ) |
22 |
1 2 3 4 5 6
|
dvh2dim |
|- ( ph -> E. z e. V -. z e. ( N ` { X } ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X } ) ) |
24 |
|
preq2 |
|- ( Y = ( 0g ` U ) -> { X , Y } = { X , ( 0g ` U ) } ) |
25 |
24
|
fveq2d |
|- ( Y = ( 0g ` U ) -> ( N ` { X , Y } ) = ( N ` { X , ( 0g ` U ) } ) ) |
26 |
3 14 4 15 6
|
lsppr0 |
|- ( ph -> ( N ` { X , ( 0g ` U ) } ) = ( N ` { X } ) ) |
27 |
25 26
|
sylan9eqr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( N ` { X , Y } ) = ( N ` { X } ) ) |
28 |
27
|
eleq2d |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( z e. ( N ` { X , Y } ) <-> z e. ( N ` { X } ) ) ) |
29 |
28
|
notbid |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( -. z e. ( N ` { X , Y } ) <-> -. z e. ( N ` { X } ) ) ) |
30 |
29
|
rexbidv |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( E. z e. V -. z e. ( N ` { X , Y } ) <-> E. z e. V -. z e. ( N ` { X } ) ) ) |
31 |
23 30
|
mpbird |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Y } ) ) |
32 |
5
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
33 |
6
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X e. V ) |
34 |
7
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y e. V ) |
35 |
|
simprl |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> X =/= ( 0g ` U ) ) |
36 |
|
simprr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> Y =/= ( 0g ` U ) ) |
37 |
1 2 3 4 32 33 34 14 35 36
|
dvhdimlem |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) ) ) -> E. z e. V -. z e. ( N ` { X , Y } ) ) |
38 |
21 31 37
|
pm2.61da2ne |
|- ( ph -> E. z e. V -. z e. ( N ` { X , Y } ) ) |