Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
|- H = ( LHyp ` K ) |
2 |
|
dvh3dim.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dvh3dim.v |
|- V = ( Base ` U ) |
4 |
|
dvh3dim.n |
|- N = ( LSpan ` U ) |
5 |
|
dvh3dim.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
dvh3dim.x |
|- ( ph -> X e. V ) |
7 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
8 |
1 2 3 7 5
|
dvh1dim |
|- ( ph -> E. z e. V z =/= ( 0g ` U ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> E. z e. V z =/= ( 0g ` U ) ) |
10 |
|
simpr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> X = ( 0g ` U ) ) |
11 |
10
|
sneqd |
|- ( ( ph /\ X = ( 0g ` U ) ) -> { X } = { ( 0g ` U ) } ) |
12 |
11
|
fveq2d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { X } ) = ( N ` { ( 0g ` U ) } ) ) |
13 |
1 2 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
14 |
7 4
|
lspsn0 |
|- ( U e. LMod -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
15 |
13 14
|
syl |
|- ( ph -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
16 |
15
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { ( 0g ` U ) } ) = { ( 0g ` U ) } ) |
17 |
12 16
|
eqtrd |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { X } ) = { ( 0g ` U ) } ) |
18 |
17
|
eleq2d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( z e. ( N ` { X } ) <-> z e. { ( 0g ` U ) } ) ) |
19 |
|
velsn |
|- ( z e. { ( 0g ` U ) } <-> z = ( 0g ` U ) ) |
20 |
18 19
|
bitrdi |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( z e. ( N ` { X } ) <-> z = ( 0g ` U ) ) ) |
21 |
20
|
necon3bbid |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( -. z e. ( N ` { X } ) <-> z =/= ( 0g ` U ) ) ) |
22 |
21
|
rexbidv |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( E. z e. V -. z e. ( N ` { X } ) <-> E. z e. V z =/= ( 0g ` U ) ) ) |
23 |
9 22
|
mpbird |
|- ( ( ph /\ X = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X } ) ) |
24 |
5
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
25 |
6
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> X e. V ) |
26 |
|
simpr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> X =/= ( 0g ` U ) ) |
27 |
1 2 3 4 24 25 25 7 26 26
|
dvhdimlem |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , X } ) ) |
28 |
|
dfsn2 |
|- { X } = { X , X } |
29 |
28
|
fveq2i |
|- ( N ` { X } ) = ( N ` { X , X } ) |
30 |
29
|
eleq2i |
|- ( z e. ( N ` { X } ) <-> z e. ( N ` { X , X } ) ) |
31 |
30
|
notbii |
|- ( -. z e. ( N ` { X } ) <-> -. z e. ( N ` { X , X } ) ) |
32 |
31
|
rexbii |
|- ( E. z e. V -. z e. ( N ` { X } ) <-> E. z e. V -. z e. ( N ` { X , X } ) ) |
33 |
27 32
|
sylibr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X } ) ) |
34 |
23 33
|
pm2.61dane |
|- ( ph -> E. z e. V -. z e. ( N ` { X } ) ) |