Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh3dim.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh3dim.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dvh3dim.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
dvh3dim.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
dvh3dim.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
8 |
1 2 3 7 5
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 𝑧 ≠ ( 0g ‘ 𝑈 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 𝑧 ≠ ( 0g ‘ 𝑈 ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → 𝑋 = ( 0g ‘ 𝑈 ) ) |
11 |
10
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → { 𝑋 } = { ( 0g ‘ 𝑈 ) } ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
13 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
7 4
|
lspsn0 |
⊢ ( 𝑈 ∈ LMod → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) } ) |
17 |
12 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 } ) = { ( 0g ‘ 𝑈 ) } ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑧 ∈ { ( 0g ‘ 𝑈 ) } ) ) |
19 |
|
velsn |
⊢ ( 𝑧 ∈ { ( 0g ‘ 𝑈 ) } ↔ 𝑧 = ( 0g ‘ 𝑈 ) ) |
20 |
18 19
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑧 = ( 0g ‘ 𝑈 ) ) ) |
21 |
20
|
necon3bbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑧 ≠ ( 0g ‘ 𝑈 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑧 ∈ 𝑉 𝑧 ≠ ( 0g ‘ 𝑈 ) ) ) |
23 |
9 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
24 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
25 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝑉 ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
27 |
1 2 3 4 24 25 25 7 26 26
|
dvhdimlem |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑋 } ) ) |
28 |
|
dfsn2 |
⊢ { 𝑋 } = { 𝑋 , 𝑋 } |
29 |
28
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 , 𝑋 } ) |
30 |
29
|
eleq2i |
⊢ ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑋 } ) ) |
31 |
30
|
notbii |
⊢ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑋 } ) ) |
32 |
31
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑋 } ) ) |
33 |
27 32
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
34 |
23 33
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |