Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh3dim.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh3dim.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dvh3dim.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
dvh3dim.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
dvh3dim.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
dvh3dim.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
1 2 3 4 5 7
|
dvh2dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
10 |
|
prcom |
⊢ { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 } |
11 |
|
preq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑌 , 𝑋 } = { 𝑌 , ( 0g ‘ 𝑈 ) } ) |
12 |
10 11
|
syl5eq |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 } = { 𝑌 , ( 0g ‘ 𝑈 ) } ) |
13 |
12
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , ( 0g ‘ 𝑈 ) } ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
15 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
16 |
3 14 4 15 7
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , ( 0g ‘ 𝑈 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
13 16
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
19 |
18
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
20 |
19
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
21 |
9 20
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
22 |
1 2 3 4 5 6
|
dvh2dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
24 |
|
preq2 |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 } = { 𝑋 , ( 0g ‘ 𝑈 ) } ) |
25 |
24
|
fveq2d |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 , ( 0g ‘ 𝑈 ) } ) ) |
26 |
3 14 4 15 6
|
lsppr0 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 0g ‘ 𝑈 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
27 |
25 26
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
28 |
27
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
29 |
28
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
30 |
29
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
31 |
23 30
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
34 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ≠ ( 0g ‘ 𝑈 ) ) |
37 |
1 2 3 4 32 33 34 14 35 36
|
dvhdimlem |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
38 |
21 31 37
|
pm2.61da2ne |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |