Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvh3dim.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvh3dim.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dvh3dim.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
dvh3dim.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
dvh3dim.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
7 |
|
dvhdim.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
8 |
|
dvhdim.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
9 |
|
dvhdim.x |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
10 |
|
dvhdimlem.y |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
11 |
1 2 3 4 5 6 7 7 8 9 10 10
|
dvh4dimlem |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑌 } ) ) |
12 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
13 |
|
df-tp |
⊢ { 𝑋 , 𝑌 , 𝑌 } = ( { 𝑋 , 𝑌 } ∪ { 𝑌 } ) |
14 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
15 |
6 7 14
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
16 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
17 |
15 16
|
unssd |
⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∪ { 𝑌 } ) ⊆ 𝑉 ) |
18 |
13 17
|
eqsstrid |
⊢ ( 𝜑 → { 𝑋 , 𝑌 , 𝑌 } ⊆ 𝑉 ) |
19 |
|
ssun1 |
⊢ { 𝑋 , 𝑌 } ⊆ ( { 𝑋 , 𝑌 } ∪ { 𝑌 } ) |
20 |
19 13
|
sseqtrri |
⊢ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 , 𝑌 } |
21 |
20
|
a1i |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 , 𝑌 } ) |
22 |
3 4
|
lspss |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑋 , 𝑌 , 𝑌 } ⊆ 𝑉 ∧ { 𝑋 , 𝑌 } ⊆ { 𝑋 , 𝑌 , 𝑌 } ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑌 } ) ) |
23 |
12 18 21 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑌 } ) ) |
24 |
23
|
ssneld |
⊢ ( 𝜑 → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑌 } ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
25 |
24
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑌 } ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
26 |
11 25
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |