Metamath Proof Explorer


Theorem dvhdimlem

Description: Lemma for dvh2dim and dvh3dim . TODO: make this obsolete and use dvh4dimlem directly? (Contributed by NM, 24-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h
|- H = ( LHyp ` K )
dvh3dim.u
|- U = ( ( DVecH ` K ) ` W )
dvh3dim.v
|- V = ( Base ` U )
dvh3dim.n
|- N = ( LSpan ` U )
dvh3dim.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dvh3dim.x
|- ( ph -> X e. V )
dvhdim.y
|- ( ph -> Y e. V )
dvhdim.o
|- .0. = ( 0g ` U )
dvhdim.x
|- ( ph -> X =/= .0. )
dvhdimlem.y
|- ( ph -> Y =/= .0. )
Assertion dvhdimlem
|- ( ph -> E. z e. V -. z e. ( N ` { X , Y } ) )

Proof

Step Hyp Ref Expression
1 dvh3dim.h
 |-  H = ( LHyp ` K )
2 dvh3dim.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dvh3dim.v
 |-  V = ( Base ` U )
4 dvh3dim.n
 |-  N = ( LSpan ` U )
5 dvh3dim.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 dvh3dim.x
 |-  ( ph -> X e. V )
7 dvhdim.y
 |-  ( ph -> Y e. V )
8 dvhdim.o
 |-  .0. = ( 0g ` U )
9 dvhdim.x
 |-  ( ph -> X =/= .0. )
10 dvhdimlem.y
 |-  ( ph -> Y =/= .0. )
11 1 2 3 4 5 6 7 7 8 9 10 10 dvh4dimlem
 |-  ( ph -> E. z e. V -. z e. ( N ` { X , Y , Y } ) )
12 1 2 5 dvhlmod
 |-  ( ph -> U e. LMod )
13 df-tp
 |-  { X , Y , Y } = ( { X , Y } u. { Y } )
14 prssi
 |-  ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V )
15 6 7 14 syl2anc
 |-  ( ph -> { X , Y } C_ V )
16 7 snssd
 |-  ( ph -> { Y } C_ V )
17 15 16 unssd
 |-  ( ph -> ( { X , Y } u. { Y } ) C_ V )
18 13 17 eqsstrid
 |-  ( ph -> { X , Y , Y } C_ V )
19 ssun1
 |-  { X , Y } C_ ( { X , Y } u. { Y } )
20 19 13 sseqtrri
 |-  { X , Y } C_ { X , Y , Y }
21 20 a1i
 |-  ( ph -> { X , Y } C_ { X , Y , Y } )
22 3 4 lspss
 |-  ( ( U e. LMod /\ { X , Y , Y } C_ V /\ { X , Y } C_ { X , Y , Y } ) -> ( N ` { X , Y } ) C_ ( N ` { X , Y , Y } ) )
23 12 18 21 22 syl3anc
 |-  ( ph -> ( N ` { X , Y } ) C_ ( N ` { X , Y , Y } ) )
24 23 ssneld
 |-  ( ph -> ( -. z e. ( N ` { X , Y , Y } ) -> -. z e. ( N ` { X , Y } ) ) )
25 24 reximdv
 |-  ( ph -> ( E. z e. V -. z e. ( N ` { X , Y , Y } ) -> E. z e. V -. z e. ( N ` { X , Y } ) ) )
26 11 25 mpd
 |-  ( ph -> E. z e. V -. z e. ( N ` { X , Y } ) )