| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvh3dim.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dvh3dim.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dvh3dim.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dvh3dim.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
dvh3dim.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
dvh3dim.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
dvh3dim.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
dvh3dim2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 9 |
1 2 3 4 5 7 8
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 12 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 13 |
|
prssi |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → { 𝑌 , 𝑍 } ⊆ 𝑉 ) |
| 14 |
7 8 13
|
syl2anc |
⊢ ( 𝜑 → { 𝑌 , 𝑍 } ⊆ 𝑉 ) |
| 15 |
3 11 4 12 14
|
lspun0 |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑌 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 16 |
|
tprot |
⊢ { ( 0g ‘ 𝑈 ) , 𝑌 , 𝑍 } = { 𝑌 , 𝑍 , ( 0g ‘ 𝑈 ) } |
| 17 |
|
df-tp |
⊢ { 𝑌 , 𝑍 , ( 0g ‘ 𝑈 ) } = ( { 𝑌 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) |
| 18 |
16 17
|
eqtr2i |
⊢ ( { 𝑌 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝑈 ) , 𝑌 , 𝑍 } |
| 19 |
|
tpeq1 |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 , 𝑍 } = { ( 0g ‘ 𝑈 ) , 𝑌 , 𝑍 } ) |
| 20 |
18 19
|
eqtr4id |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( { 𝑌 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) = { 𝑋 , 𝑌 , 𝑍 } ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ ( { 𝑌 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 22 |
15 21
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 23 |
22
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 24 |
23
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 25 |
24
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 26 |
10 25
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 27 |
1 2 3 4 5 6 8
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 29 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) → { 𝑋 , 𝑍 } ⊆ 𝑉 ) |
| 30 |
6 8 29
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 , 𝑍 } ⊆ 𝑉 ) |
| 31 |
3 11 4 12 30
|
lspun0 |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) |
| 32 |
|
df-tp |
⊢ { 𝑋 , 𝑍 , ( 0g ‘ 𝑈 ) } = ( { 𝑋 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) |
| 33 |
|
tpcomb |
⊢ { 𝑋 , 𝑍 , ( 0g ‘ 𝑈 ) } = { 𝑋 , ( 0g ‘ 𝑈 ) , 𝑍 } |
| 34 |
32 33
|
eqtr3i |
⊢ ( { 𝑋 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) = { 𝑋 , ( 0g ‘ 𝑈 ) , 𝑍 } |
| 35 |
|
tpeq2 |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 , 𝑍 } = { 𝑋 , ( 0g ‘ 𝑈 ) , 𝑍 } ) |
| 36 |
34 35
|
eqtr4id |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → ( { 𝑋 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) = { 𝑋 , 𝑌 , 𝑍 } ) |
| 37 |
36
|
fveq2d |
⊢ ( 𝑌 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ ( { 𝑋 , 𝑍 } ∪ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 38 |
31 37
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑍 } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 39 |
38
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ↔ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 40 |
39
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ↔ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 41 |
40
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ↔ ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 42 |
28 41
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑌 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 43 |
1 2 3 4 5 6 7
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 45 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 46 |
6 7 45
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 47 |
3 11 4 12 46
|
lspun0 |
⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 , 𝑌 } ∪ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 48 |
|
tpeq3 |
⊢ ( 𝑍 = ( 0g ‘ 𝑈 ) → { 𝑋 , 𝑌 , 𝑍 } = { 𝑋 , 𝑌 , ( 0g ‘ 𝑈 ) } ) |
| 49 |
|
df-tp |
⊢ { 𝑋 , 𝑌 , ( 0g ‘ 𝑈 ) } = ( { 𝑋 , 𝑌 } ∪ { ( 0g ‘ 𝑈 ) } ) |
| 50 |
48 49
|
eqtr2di |
⊢ ( 𝑍 = ( 0g ‘ 𝑈 ) → ( { 𝑋 , 𝑌 } ∪ { ( 0g ‘ 𝑈 ) } ) = { 𝑋 , 𝑌 , 𝑍 } ) |
| 51 |
50
|
fveq2d |
⊢ ( 𝑍 = ( 0g ‘ 𝑈 ) → ( 𝑁 ‘ ( { 𝑋 , 𝑌 } ∪ { ( 0g ‘ 𝑈 ) } ) ) = ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 52 |
47 51
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑍 = ( 0g ‘ 𝑈 ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 53 |
52
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑍 = ( 0g ‘ 𝑈 ) ) → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 54 |
53
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑍 = ( 0g ‘ 𝑈 ) ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 55 |
54
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑍 = ( 0g ‘ 𝑈 ) ) → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) ) |
| 56 |
44 55
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑍 = ( 0g ‘ 𝑈 ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 57 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 58 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ∈ 𝑉 ) |
| 59 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ∈ 𝑉 ) |
| 60 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑍 ∈ 𝑉 ) |
| 61 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑋 ≠ ( 0g ‘ 𝑈 ) ) |
| 62 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑌 ≠ ( 0g ‘ 𝑈 ) ) |
| 63 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → 𝑍 ≠ ( 0g ‘ 𝑈 ) ) |
| 64 |
1 2 3 4 57 58 59 60 11 61 62 63
|
dvh4dimlem |
⊢ ( ( 𝜑 ∧ ( 𝑋 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑌 ≠ ( 0g ‘ 𝑈 ) ∧ 𝑍 ≠ ( 0g ‘ 𝑈 ) ) ) → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |
| 65 |
26 42 56 64
|
pm2.61da3ne |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ) |