Step |
Hyp |
Ref |
Expression |
1 |
|
dvh3dim.h |
|- H = ( LHyp ` K ) |
2 |
|
dvh3dim.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dvh3dim.v |
|- V = ( Base ` U ) |
4 |
|
dvh3dim.n |
|- N = ( LSpan ` U ) |
5 |
|
dvh3dim.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
dvh3dim.x |
|- ( ph -> X e. V ) |
7 |
|
dvh3dim.y |
|- ( ph -> Y e. V ) |
8 |
|
dvh3dim2.z |
|- ( ph -> Z e. V ) |
9 |
1 2 3 4 5 7 8
|
dvh3dim |
|- ( ph -> E. z e. V -. z e. ( N ` { Y , Z } ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ X = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { Y , Z } ) ) |
11 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
12 |
1 2 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
13 |
|
prssi |
|- ( ( Y e. V /\ Z e. V ) -> { Y , Z } C_ V ) |
14 |
7 8 13
|
syl2anc |
|- ( ph -> { Y , Z } C_ V ) |
15 |
3 11 4 12 14
|
lspun0 |
|- ( ph -> ( N ` ( { Y , Z } u. { ( 0g ` U ) } ) ) = ( N ` { Y , Z } ) ) |
16 |
|
tprot |
|- { ( 0g ` U ) , Y , Z } = { Y , Z , ( 0g ` U ) } |
17 |
|
df-tp |
|- { Y , Z , ( 0g ` U ) } = ( { Y , Z } u. { ( 0g ` U ) } ) |
18 |
16 17
|
eqtr2i |
|- ( { Y , Z } u. { ( 0g ` U ) } ) = { ( 0g ` U ) , Y , Z } |
19 |
|
tpeq1 |
|- ( X = ( 0g ` U ) -> { X , Y , Z } = { ( 0g ` U ) , Y , Z } ) |
20 |
18 19
|
eqtr4id |
|- ( X = ( 0g ` U ) -> ( { Y , Z } u. { ( 0g ` U ) } ) = { X , Y , Z } ) |
21 |
20
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( N ` ( { Y , Z } u. { ( 0g ` U ) } ) ) = ( N ` { X , Y , Z } ) ) |
22 |
15 21
|
sylan9req |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( N ` { Y , Z } ) = ( N ` { X , Y , Z } ) ) |
23 |
22
|
eleq2d |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( z e. ( N ` { Y , Z } ) <-> z e. ( N ` { X , Y , Z } ) ) ) |
24 |
23
|
notbid |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( -. z e. ( N ` { Y , Z } ) <-> -. z e. ( N ` { X , Y , Z } ) ) ) |
25 |
24
|
rexbidv |
|- ( ( ph /\ X = ( 0g ` U ) ) -> ( E. z e. V -. z e. ( N ` { Y , Z } ) <-> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) ) |
26 |
10 25
|
mpbid |
|- ( ( ph /\ X = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) |
27 |
1 2 3 4 5 6 8
|
dvh3dim |
|- ( ph -> E. z e. V -. z e. ( N ` { X , Z } ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Z } ) ) |
29 |
|
prssi |
|- ( ( X e. V /\ Z e. V ) -> { X , Z } C_ V ) |
30 |
6 8 29
|
syl2anc |
|- ( ph -> { X , Z } C_ V ) |
31 |
3 11 4 12 30
|
lspun0 |
|- ( ph -> ( N ` ( { X , Z } u. { ( 0g ` U ) } ) ) = ( N ` { X , Z } ) ) |
32 |
|
df-tp |
|- { X , Z , ( 0g ` U ) } = ( { X , Z } u. { ( 0g ` U ) } ) |
33 |
|
tpcomb |
|- { X , Z , ( 0g ` U ) } = { X , ( 0g ` U ) , Z } |
34 |
32 33
|
eqtr3i |
|- ( { X , Z } u. { ( 0g ` U ) } ) = { X , ( 0g ` U ) , Z } |
35 |
|
tpeq2 |
|- ( Y = ( 0g ` U ) -> { X , Y , Z } = { X , ( 0g ` U ) , Z } ) |
36 |
34 35
|
eqtr4id |
|- ( Y = ( 0g ` U ) -> ( { X , Z } u. { ( 0g ` U ) } ) = { X , Y , Z } ) |
37 |
36
|
fveq2d |
|- ( Y = ( 0g ` U ) -> ( N ` ( { X , Z } u. { ( 0g ` U ) } ) ) = ( N ` { X , Y , Z } ) ) |
38 |
31 37
|
sylan9req |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( N ` { X , Z } ) = ( N ` { X , Y , Z } ) ) |
39 |
38
|
eleq2d |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( z e. ( N ` { X , Z } ) <-> z e. ( N ` { X , Y , Z } ) ) ) |
40 |
39
|
notbid |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( -. z e. ( N ` { X , Z } ) <-> -. z e. ( N ` { X , Y , Z } ) ) ) |
41 |
40
|
rexbidv |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> ( E. z e. V -. z e. ( N ` { X , Z } ) <-> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) ) |
42 |
28 41
|
mpbid |
|- ( ( ph /\ Y = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) |
43 |
1 2 3 4 5 6 7
|
dvh3dim |
|- ( ph -> E. z e. V -. z e. ( N ` { X , Y } ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ Z = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Y } ) ) |
45 |
|
prssi |
|- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
46 |
6 7 45
|
syl2anc |
|- ( ph -> { X , Y } C_ V ) |
47 |
3 11 4 12 46
|
lspun0 |
|- ( ph -> ( N ` ( { X , Y } u. { ( 0g ` U ) } ) ) = ( N ` { X , Y } ) ) |
48 |
|
tpeq3 |
|- ( Z = ( 0g ` U ) -> { X , Y , Z } = { X , Y , ( 0g ` U ) } ) |
49 |
|
df-tp |
|- { X , Y , ( 0g ` U ) } = ( { X , Y } u. { ( 0g ` U ) } ) |
50 |
48 49
|
eqtr2di |
|- ( Z = ( 0g ` U ) -> ( { X , Y } u. { ( 0g ` U ) } ) = { X , Y , Z } ) |
51 |
50
|
fveq2d |
|- ( Z = ( 0g ` U ) -> ( N ` ( { X , Y } u. { ( 0g ` U ) } ) ) = ( N ` { X , Y , Z } ) ) |
52 |
47 51
|
sylan9req |
|- ( ( ph /\ Z = ( 0g ` U ) ) -> ( N ` { X , Y } ) = ( N ` { X , Y , Z } ) ) |
53 |
52
|
eleq2d |
|- ( ( ph /\ Z = ( 0g ` U ) ) -> ( z e. ( N ` { X , Y } ) <-> z e. ( N ` { X , Y , Z } ) ) ) |
54 |
53
|
notbid |
|- ( ( ph /\ Z = ( 0g ` U ) ) -> ( -. z e. ( N ` { X , Y } ) <-> -. z e. ( N ` { X , Y , Z } ) ) ) |
55 |
54
|
rexbidv |
|- ( ( ph /\ Z = ( 0g ` U ) ) -> ( E. z e. V -. z e. ( N ` { X , Y } ) <-> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) ) |
56 |
44 55
|
mpbid |
|- ( ( ph /\ Z = ( 0g ` U ) ) -> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) |
57 |
5
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
58 |
6
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> X e. V ) |
59 |
7
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> Y e. V ) |
60 |
8
|
adantr |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> Z e. V ) |
61 |
|
simpr1 |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> X =/= ( 0g ` U ) ) |
62 |
|
simpr2 |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> Y =/= ( 0g ` U ) ) |
63 |
|
simpr3 |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> Z =/= ( 0g ` U ) ) |
64 |
1 2 3 4 57 58 59 60 11 61 62 63
|
dvh4dimlem |
|- ( ( ph /\ ( X =/= ( 0g ` U ) /\ Y =/= ( 0g ` U ) /\ Z =/= ( 0g ` U ) ) ) -> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) |
65 |
26 42 56 64
|
pm2.61da3ne |
|- ( ph -> E. z e. V -. z e. ( N ` { X , Y , Z } ) ) |