Metamath Proof Explorer


Theorem dvh2dim

Description: There is a vector that is outside the span of another. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dvh3dim.h H=LHypK
dvh3dim.u U=DVecHKW
dvh3dim.v V=BaseU
dvh3dim.n N=LSpanU
dvh3dim.k φKHLWH
dvh3dim.x φXV
Assertion dvh2dim φzV¬zNX

Proof

Step Hyp Ref Expression
1 dvh3dim.h H=LHypK
2 dvh3dim.u U=DVecHKW
3 dvh3dim.v V=BaseU
4 dvh3dim.n N=LSpanU
5 dvh3dim.k φKHLWH
6 dvh3dim.x φXV
7 eqid 0U=0U
8 1 2 3 7 5 dvh1dim φzVz0U
9 8 adantr φX=0UzVz0U
10 simpr φX=0UX=0U
11 10 sneqd φX=0UX=0U
12 11 fveq2d φX=0UNX=N0U
13 1 2 5 dvhlmod φULMod
14 7 4 lspsn0 ULModN0U=0U
15 13 14 syl φN0U=0U
16 15 adantr φX=0UN0U=0U
17 12 16 eqtrd φX=0UNX=0U
18 17 eleq2d φX=0UzNXz0U
19 velsn z0Uz=0U
20 18 19 bitrdi φX=0UzNXz=0U
21 20 necon3bbid φX=0U¬zNXz0U
22 21 rexbidv φX=0UzV¬zNXzVz0U
23 9 22 mpbird φX=0UzV¬zNX
24 5 adantr φX0UKHLWH
25 6 adantr φX0UXV
26 simpr φX0UX0U
27 1 2 3 4 24 25 25 7 26 26 dvhdimlem φX0UzV¬zNXX
28 dfsn2 X=XX
29 28 fveq2i NX=NXX
30 29 eleq2i zNXzNXX
31 30 notbii ¬zNX¬zNXX
32 31 rexbii zV¬zNXzV¬zNXX
33 27 32 sylibr φX0UzV¬zNX
34 23 33 pm2.61dane φzV¬zNX