Metamath Proof Explorer


Theorem mapdh9a

Description: Lemma for part (9) in Baer p. 48. TODO: why is this 50% larger than mapdh9aOLDN ? (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8h.f φ F D
mapdh8h.mn φ M N X = J F
mapdh9a.x φ X V 0 ˙
mapdh9a.t φ T V
Assertion mapdh9a φ ∃! y D z V ¬ z N X N T y = I z I X F z T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8h.f φ F D
16 mapdh8h.mn φ M N X = J F
17 mapdh9a.x φ X V 0 ˙
18 mapdh9a.t φ T V
19 14 3ad2ant1 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T K HL W H
20 15 3ad2ant1 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T F D
21 16 3ad2ant1 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T M N X = J F
22 17 3ad2ant1 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T X V 0 ˙
23 simp3ll φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T z V 0 ˙
24 simp3rl φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T w V 0 ˙
25 simplrl z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N z N X
26 25 3ad2ant3 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N z N X
27 26 necomd φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N X N z
28 simprrl z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N w N X
29 28 3ad2ant3 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N w N X
30 29 necomd φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N X N w
31 simplrr z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N z N T
32 31 3ad2ant3 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N z N T
33 simprrr z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N w N T
34 33 3ad2ant3 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T N w N T
35 18 3ad2ant1 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T T V
36 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 27 30 32 34 35 mapdh8 φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T I z I X F z T = I w I X F w T
37 36 3exp φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T I z I X F z T = I w I X F w T
38 37 ralrimivv φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T I z I X F z T = I w I X F w T
39 17 eldifad φ X V
40 1 2 3 6 14 39 18 dvh3dim φ z V ¬ z N X T
41 eqid LSubSp U = LSubSp U
42 1 2 14 dvhlmod φ U LMod
43 42 ad2antrr φ z V ¬ z N X T U LMod
44 3 41 6 42 39 18 lspprcl φ N X T LSubSp U
45 44 ad2antrr φ z V ¬ z N X T N X T LSubSp U
46 simplr φ z V ¬ z N X T z V
47 simpr φ z V ¬ z N X T ¬ z N X T
48 5 41 43 45 46 47 lssneln0 φ z V ¬ z N X T z V 0 ˙
49 1 2 14 dvhlvec φ U LVec
50 49 ad2antrr φ z V ¬ z N X T U LVec
51 39 ad2antrr φ z V ¬ z N X T X V
52 18 ad2antrr φ z V ¬ z N X T T V
53 3 6 50 46 51 52 47 lspindpi φ z V ¬ z N X T N z N X N z N T
54 48 53 jca φ z V ¬ z N X T z V 0 ˙ N z N X N z N T
55 54 ex φ z V ¬ z N X T z V 0 ˙ N z N X N z N T
56 55 reximdva φ z V ¬ z N X T z V z V 0 ˙ N z N X N z N T
57 40 56 mpd φ z V z V 0 ˙ N z N X N z N T
58 14 ad2antrr φ z V z V 0 ˙ N z N X N z N T K HL W H
59 15 ad2antrr φ z V z V 0 ˙ N z N X N z N T F D
60 16 ad2antrr φ z V z V 0 ˙ N z N X N z N T M N X = J F
61 17 ad2antrr φ z V z V 0 ˙ N z N X N z N T X V 0 ˙
62 simplr φ z V z V 0 ˙ N z N X N z N T z V
63 simprrl φ z V z V 0 ˙ N z N X N z N T N z N X
64 63 necomd φ z V z V 0 ˙ N z N X N z N T N X N z
65 10 13 1 12 2 3 4 5 6 7 8 9 11 58 59 60 61 62 64 mapdhcl φ z V z V 0 ˙ N z N X N z N T I X F z D
66 eqidd φ z V z V 0 ˙ N z N X N z N T I X F z = I X F z
67 simprl φ z V z V 0 ˙ N z N X N z N T z V 0 ˙
68 10 13 1 12 2 3 4 5 6 7 8 9 11 58 59 60 61 67 65 64 mapdheq φ z V z V 0 ˙ N z N X N z N T I X F z = I X F z M N z = J I X F z M N X - ˙ z = J F R I X F z
69 66 68 mpbid φ z V z V 0 ˙ N z N X N z N T M N z = J I X F z M N X - ˙ z = J F R I X F z
70 69 simpld φ z V z V 0 ˙ N z N X N z N T M N z = J I X F z
71 18 ad2antrr φ z V z V 0 ˙ N z N X N z N T T V
72 simprrr φ z V z V 0 ˙ N z N X N z N T N z N T
73 10 13 1 12 2 3 4 5 6 7 8 9 11 58 65 70 67 71 72 mapdhcl φ z V z V 0 ˙ N z N X N z N T I z I X F z T D
74 73 ex φ z V z V 0 ˙ N z N X N z N T I z I X F z T D
75 74 ancld φ z V z V 0 ˙ N z N X N z N T z V 0 ˙ N z N X N z N T I z I X F z T D
76 75 reximdva φ z V z V 0 ˙ N z N X N z N T z V z V 0 ˙ N z N X N z N T I z I X F z T D
77 57 76 mpd φ z V z V 0 ˙ N z N X N z N T I z I X F z T D
78 eleq1w z = w z V 0 ˙ w V 0 ˙
79 sneq z = w z = w
80 79 fveq2d z = w N z = N w
81 80 neeq1d z = w N z N X N w N X
82 80 neeq1d z = w N z N T N w N T
83 81 82 anbi12d z = w N z N X N z N T N w N X N w N T
84 78 83 anbi12d z = w z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T
85 oteq1 z = w z I X F z T = w I X F z T
86 oteq3 z = w X F z = X F w
87 86 fveq2d z = w I X F z = I X F w
88 87 oteq2d z = w w I X F z T = w I X F w T
89 85 88 eqtrd z = w z I X F z T = w I X F w T
90 89 fveq2d z = w I z I X F z T = I w I X F w T
91 84 90 reusv3 z V z V 0 ˙ N z N X N z N T I z I X F z T D z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T I z I X F z T = I w I X F w T y D z V z V 0 ˙ N z N X N z N T y = I z I X F z T
92 77 91 syl φ z V w V z V 0 ˙ N z N X N z N T w V 0 ˙ N w N X N w N T I z I X F z T = I w I X F w T y D z V z V 0 ˙ N z N X N z N T y = I z I X F z T
93 38 92 mpbid φ y D z V z V 0 ˙ N z N X N z N T y = I z I X F z T
94 ioran ¬ z N X z N T ¬ z N X ¬ z N T
95 elun z N X N T z N X z N T
96 94 95 xchnxbir ¬ z N X N T ¬ z N X ¬ z N T
97 42 ad2antrr φ z V ¬ z N X ¬ z N T U LMod
98 3 41 6 lspsncl U LMod X V N X LSubSp U
99 42 39 98 syl2anc φ N X LSubSp U
100 99 ad2antrr φ z V ¬ z N X ¬ z N T N X LSubSp U
101 simplr φ z V ¬ z N X ¬ z N T z V
102 simprl φ z V ¬ z N X ¬ z N T ¬ z N X
103 5 41 97 100 101 102 lssneln0 φ z V ¬ z N X ¬ z N T z V 0 ˙
104 103 ex φ z V ¬ z N X ¬ z N T z V 0 ˙
105 42 ad2antrr φ z V ¬ z N X U LMod
106 simplr φ z V ¬ z N X z V
107 39 ad2antrr φ z V ¬ z N X X V
108 simpr φ z V ¬ z N X ¬ z N X
109 3 6 105 106 107 108 lspsnne2 φ z V ¬ z N X N z N X
110 109 ex φ z V ¬ z N X N z N X
111 42 ad2antrr φ z V ¬ z N T U LMod
112 simplr φ z V ¬ z N T z V
113 18 ad2antrr φ z V ¬ z N T T V
114 simpr φ z V ¬ z N T ¬ z N T
115 3 6 111 112 113 114 lspsnne2 φ z V ¬ z N T N z N T
116 115 ex φ z V ¬ z N T N z N T
117 110 116 anim12d φ z V ¬ z N X ¬ z N T N z N X N z N T
118 104 117 jcad φ z V ¬ z N X ¬ z N T z V 0 ˙ N z N X N z N T
119 96 118 syl5bi φ z V ¬ z N X N T z V 0 ˙ N z N X N z N T
120 119 imim1d φ z V z V 0 ˙ N z N X N z N T y = I z I X F z T ¬ z N X N T y = I z I X F z T
121 120 ralimdva φ z V z V 0 ˙ N z N X N z N T y = I z I X F z T z V ¬ z N X N T y = I z I X F z T
122 121 reximdv φ y D z V z V 0 ˙ N z N X N z N T y = I z I X F z T y D z V ¬ z N X N T y = I z I X F z T
123 93 122 mpd φ y D z V ¬ z N X N T y = I z I X F z T
124 3 6 42 39 18 lspprid1 φ X N X T
125 41 6 42 44 124 lspsnel5a φ N X N X T
126 3 6 42 39 18 lspprid2 φ T N X T
127 41 6 42 44 126 lspsnel5a φ N T N X T
128 125 127 unssd φ N X N T N X T
129 128 ssneld φ ¬ z N X T ¬ z N X N T
130 129 reximdv φ z V ¬ z N X T z V ¬ z N X N T
131 40 130 mpd φ z V ¬ z N X N T
132 reusv1 z V ¬ z N X N T ∃! y D z V ¬ z N X N T y = I z I X F z T y D z V ¬ z N X N T y = I z I X F z T
133 131 132 syl φ ∃! y D z V ¬ z N X N T y = I z I X F z T y D z V ¬ z N X N T y = I z I X F z T
134 123 133 mpbird φ ∃! y D z V ¬ z N X N T y = I z I X F z T