Metamath Proof Explorer


Theorem mapdh9a

Description: Lemma for part (9) in Baer p. 48. TODO: why is this 50% larger than mapdh9aOLDN ? (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8h.f φFD
mapdh8h.mn φMNX=JF
mapdh9a.x φXV0˙
mapdh9a.t φTV
Assertion mapdh9a φ∃!yDzV¬zNXNTy=IzIXFzT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8h.f φFD
16 mapdh8h.mn φMNX=JF
17 mapdh9a.x φXV0˙
18 mapdh9a.t φTV
19 14 3ad2ant1 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTKHLWH
20 15 3ad2ant1 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTFD
21 16 3ad2ant1 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTMNX=JF
22 17 3ad2ant1 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTXV0˙
23 simp3ll φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTzV0˙
24 simp3rl φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTwV0˙
25 simplrl zV0˙NzNXNzNTwV0˙NwNXNwNTNzNX
26 25 3ad2ant3 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTNzNX
27 26 necomd φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTNXNz
28 simprrl zV0˙NzNXNzNTwV0˙NwNXNwNTNwNX
29 28 3ad2ant3 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTNwNX
30 29 necomd φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTNXNw
31 simplrr zV0˙NzNXNzNTwV0˙NwNXNwNTNzNT
32 31 3ad2ant3 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTNzNT
33 simprrr zV0˙NzNXNzNTwV0˙NwNXNwNTNwNT
34 33 3ad2ant3 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTNwNT
35 18 3ad2ant1 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTTV
36 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 27 30 32 34 35 mapdh8 φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTIzIXFzT=IwIXFwT
37 36 3exp φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTIzIXFzT=IwIXFwT
38 37 ralrimivv φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTIzIXFzT=IwIXFwT
39 17 eldifad φXV
40 1 2 3 6 14 39 18 dvh3dim φzV¬zNXT
41 eqid LSubSpU=LSubSpU
42 1 2 14 dvhlmod φULMod
43 42 ad2antrr φzV¬zNXTULMod
44 3 41 6 42 39 18 lspprcl φNXTLSubSpU
45 44 ad2antrr φzV¬zNXTNXTLSubSpU
46 simplr φzV¬zNXTzV
47 simpr φzV¬zNXT¬zNXT
48 5 41 43 45 46 47 lssneln0 φzV¬zNXTzV0˙
49 1 2 14 dvhlvec φULVec
50 49 ad2antrr φzV¬zNXTULVec
51 39 ad2antrr φzV¬zNXTXV
52 18 ad2antrr φzV¬zNXTTV
53 3 6 50 46 51 52 47 lspindpi φzV¬zNXTNzNXNzNT
54 48 53 jca φzV¬zNXTzV0˙NzNXNzNT
55 54 ex φzV¬zNXTzV0˙NzNXNzNT
56 55 reximdva φzV¬zNXTzVzV0˙NzNXNzNT
57 40 56 mpd φzVzV0˙NzNXNzNT
58 14 ad2antrr φzVzV0˙NzNXNzNTKHLWH
59 15 ad2antrr φzVzV0˙NzNXNzNTFD
60 16 ad2antrr φzVzV0˙NzNXNzNTMNX=JF
61 17 ad2antrr φzVzV0˙NzNXNzNTXV0˙
62 simplr φzVzV0˙NzNXNzNTzV
63 simprrl φzVzV0˙NzNXNzNTNzNX
64 63 necomd φzVzV0˙NzNXNzNTNXNz
65 10 13 1 12 2 3 4 5 6 7 8 9 11 58 59 60 61 62 64 mapdhcl φzVzV0˙NzNXNzNTIXFzD
66 eqidd φzVzV0˙NzNXNzNTIXFz=IXFz
67 simprl φzVzV0˙NzNXNzNTzV0˙
68 10 13 1 12 2 3 4 5 6 7 8 9 11 58 59 60 61 67 65 64 mapdheq φzVzV0˙NzNXNzNTIXFz=IXFzMNz=JIXFzMNX-˙z=JFRIXFz
69 66 68 mpbid φzVzV0˙NzNXNzNTMNz=JIXFzMNX-˙z=JFRIXFz
70 69 simpld φzVzV0˙NzNXNzNTMNz=JIXFz
71 18 ad2antrr φzVzV0˙NzNXNzNTTV
72 simprrr φzVzV0˙NzNXNzNTNzNT
73 10 13 1 12 2 3 4 5 6 7 8 9 11 58 65 70 67 71 72 mapdhcl φzVzV0˙NzNXNzNTIzIXFzTD
74 73 ex φzVzV0˙NzNXNzNTIzIXFzTD
75 74 ancld φzVzV0˙NzNXNzNTzV0˙NzNXNzNTIzIXFzTD
76 75 reximdva φzVzV0˙NzNXNzNTzVzV0˙NzNXNzNTIzIXFzTD
77 57 76 mpd φzVzV0˙NzNXNzNTIzIXFzTD
78 eleq1w z=wzV0˙wV0˙
79 sneq z=wz=w
80 79 fveq2d z=wNz=Nw
81 80 neeq1d z=wNzNXNwNX
82 80 neeq1d z=wNzNTNwNT
83 81 82 anbi12d z=wNzNXNzNTNwNXNwNT
84 78 83 anbi12d z=wzV0˙NzNXNzNTwV0˙NwNXNwNT
85 oteq1 z=wzIXFzT=wIXFzT
86 oteq3 z=wXFz=XFw
87 86 fveq2d z=wIXFz=IXFw
88 87 oteq2d z=wwIXFzT=wIXFwT
89 85 88 eqtrd z=wzIXFzT=wIXFwT
90 89 fveq2d z=wIzIXFzT=IwIXFwT
91 84 90 reusv3 zVzV0˙NzNXNzNTIzIXFzTDzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTIzIXFzT=IwIXFwTyDzVzV0˙NzNXNzNTy=IzIXFzT
92 77 91 syl φzVwVzV0˙NzNXNzNTwV0˙NwNXNwNTIzIXFzT=IwIXFwTyDzVzV0˙NzNXNzNTy=IzIXFzT
93 38 92 mpbid φyDzVzV0˙NzNXNzNTy=IzIXFzT
94 ioran ¬zNXzNT¬zNX¬zNT
95 elun zNXNTzNXzNT
96 94 95 xchnxbir ¬zNXNT¬zNX¬zNT
97 42 ad2antrr φzV¬zNX¬zNTULMod
98 3 41 6 lspsncl ULModXVNXLSubSpU
99 42 39 98 syl2anc φNXLSubSpU
100 99 ad2antrr φzV¬zNX¬zNTNXLSubSpU
101 simplr φzV¬zNX¬zNTzV
102 simprl φzV¬zNX¬zNT¬zNX
103 5 41 97 100 101 102 lssneln0 φzV¬zNX¬zNTzV0˙
104 103 ex φzV¬zNX¬zNTzV0˙
105 42 ad2antrr φzV¬zNXULMod
106 simplr φzV¬zNXzV
107 39 ad2antrr φzV¬zNXXV
108 simpr φzV¬zNX¬zNX
109 3 6 105 106 107 108 lspsnne2 φzV¬zNXNzNX
110 109 ex φzV¬zNXNzNX
111 42 ad2antrr φzV¬zNTULMod
112 simplr φzV¬zNTzV
113 18 ad2antrr φzV¬zNTTV
114 simpr φzV¬zNT¬zNT
115 3 6 111 112 113 114 lspsnne2 φzV¬zNTNzNT
116 115 ex φzV¬zNTNzNT
117 110 116 anim12d φzV¬zNX¬zNTNzNXNzNT
118 104 117 jcad φzV¬zNX¬zNTzV0˙NzNXNzNT
119 96 118 biimtrid φzV¬zNXNTzV0˙NzNXNzNT
120 119 imim1d φzVzV0˙NzNXNzNTy=IzIXFzT¬zNXNTy=IzIXFzT
121 120 ralimdva φzVzV0˙NzNXNzNTy=IzIXFzTzV¬zNXNTy=IzIXFzT
122 121 reximdv φyDzVzV0˙NzNXNzNTy=IzIXFzTyDzV¬zNXNTy=IzIXFzT
123 93 122 mpd φyDzV¬zNXNTy=IzIXFzT
124 3 6 42 39 18 lspprid1 φXNXT
125 41 6 42 44 124 lspsnel5a φNXNXT
126 3 6 42 39 18 lspprid2 φTNXT
127 41 6 42 44 126 lspsnel5a φNTNXT
128 125 127 unssd φNXNTNXT
129 128 ssneld φ¬zNXT¬zNXNT
130 129 reximdv φzV¬zNXTzV¬zNXNT
131 40 130 mpd φzV¬zNXNT
132 reusv1 zV¬zNXNT∃!yDzV¬zNXNTy=IzIXFzTyDzV¬zNXNTy=IzIXFzT
133 131 132 syl φ∃!yDzV¬zNXNTy=IzIXFzTyDzV¬zNXNTy=IzIXFzT
134 123 133 mpbird φ∃!yDzV¬zNXNTy=IzIXFzT