Metamath Proof Explorer


Theorem mapdh9aOLDN

Description: Lemma for part (9) in Baer p. 48. (Contributed by NM, 14-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8h.f φFD
mapdh8h.mn φMNX=JF
mapdh9a.x φXV0˙
mapdh9a.t φTV
Assertion mapdh9aOLDN φ∃!yDzV¬zNXTy=IzIXFzT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8h.f φFD
16 mapdh8h.mn φMNX=JF
17 mapdh9a.x φXV0˙
18 mapdh9a.t φTV
19 14 3ad2ant1 φzVwV¬zNXT¬wNXTKHLWH
20 15 3ad2ant1 φzVwV¬zNXT¬wNXTFD
21 16 3ad2ant1 φzVwV¬zNXT¬wNXTMNX=JF
22 17 3ad2ant1 φzVwV¬zNXT¬wNXTXV0˙
23 eqid LSubSpU=LSubSpU
24 1 2 14 dvhlmod φULMod
25 24 3ad2ant1 φzVwV¬zNXT¬wNXTULMod
26 17 eldifad φXV
27 3 23 6 24 26 18 lspprcl φNXTLSubSpU
28 27 3ad2ant1 φzVwV¬zNXT¬wNXTNXTLSubSpU
29 simp2l φzVwV¬zNXT¬wNXTzV
30 simp3l φzVwV¬zNXT¬wNXT¬zNXT
31 5 23 25 28 29 30 lssneln0 φzVwV¬zNXT¬wNXTzV0˙
32 simp2r φzVwV¬zNXT¬wNXTwV
33 simp3r φzVwV¬zNXT¬wNXT¬wNXT
34 5 23 25 28 32 33 lssneln0 φzVwV¬zNXT¬wNXTwV0˙
35 1 2 14 dvhlvec φULVec
36 35 3ad2ant1 φzVwV¬zNXT¬wNXTULVec
37 26 3ad2ant1 φzVwV¬zNXT¬wNXTXV
38 18 3ad2ant1 φzVwV¬zNXT¬wNXTTV
39 3 6 36 29 37 38 30 lspindpi φzVwV¬zNXT¬wNXTNzNXNzNT
40 39 simpld φzVwV¬zNXT¬wNXTNzNX
41 40 necomd φzVwV¬zNXT¬wNXTNXNz
42 3 6 36 32 37 38 33 lspindpi φzVwV¬zNXT¬wNXTNwNXNwNT
43 42 simpld φzVwV¬zNXT¬wNXTNwNX
44 43 necomd φzVwV¬zNXT¬wNXTNXNw
45 39 simprd φzVwV¬zNXT¬wNXTNzNT
46 42 simprd φzVwV¬zNXT¬wNXTNwNT
47 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 31 34 41 44 45 46 38 mapdh8 φzVwV¬zNXT¬wNXTIzIXFzT=IwIXFwT
48 47 3exp φzVwV¬zNXT¬wNXTIzIXFzT=IwIXFwT
49 48 ralrimivv φzVwV¬zNXT¬wNXTIzIXFzT=IwIXFwT
50 1 2 3 6 14 26 18 dvh3dim φzV¬zNXT
51 14 ad2antrr φzV¬zNXTKHLWH
52 15 ad2antrr φzV¬zNXTFD
53 16 ad2antrr φzV¬zNXTMNX=JF
54 17 ad2antrr φzV¬zNXTXV0˙
55 simplr φzV¬zNXTzV
56 35 ad2antrr φzV¬zNXTULVec
57 26 ad2antrr φzV¬zNXTXV
58 18 ad2antrr φzV¬zNXTTV
59 simpr φzV¬zNXT¬zNXT
60 3 6 56 55 57 58 59 lspindpi φzV¬zNXTNzNXNzNT
61 60 simpld φzV¬zNXTNzNX
62 61 necomd φzV¬zNXTNXNz
63 10 13 1 12 2 3 4 5 6 7 8 9 11 51 52 53 54 55 62 mapdhcl φzV¬zNXTIXFzD
64 eqidd φzV¬zNXTIXFz=IXFz
65 24 ad2antrr φzV¬zNXTULMod
66 27 ad2antrr φzV¬zNXTNXTLSubSpU
67 5 23 65 66 55 59 lssneln0 φzV¬zNXTzV0˙
68 10 13 1 12 2 3 4 5 6 7 8 9 11 51 52 53 54 67 63 62 mapdheq φzV¬zNXTIXFz=IXFzMNz=JIXFzMNX-˙z=JFRIXFz
69 64 68 mpbid φzV¬zNXTMNz=JIXFzMNX-˙z=JFRIXFz
70 69 simpld φzV¬zNXTMNz=JIXFz
71 60 simprd φzV¬zNXTNzNT
72 10 13 1 12 2 3 4 5 6 7 8 9 11 51 63 70 67 58 71 mapdhcl φzV¬zNXTIzIXFzTD
73 72 ex φzV¬zNXTIzIXFzTD
74 73 ancld φzV¬zNXT¬zNXTIzIXFzTD
75 74 reximdva φzV¬zNXTzV¬zNXTIzIXFzTD
76 50 75 mpd φzV¬zNXTIzIXFzTD
77 eleq1w z=wzNXTwNXT
78 77 notbid z=w¬zNXT¬wNXT
79 oteq1 z=wzIXFzT=wIXFzT
80 oteq3 z=wXFz=XFw
81 80 fveq2d z=wIXFz=IXFw
82 81 oteq2d z=wwIXFzT=wIXFwT
83 79 82 eqtrd z=wzIXFzT=wIXFwT
84 83 fveq2d z=wIzIXFzT=IwIXFwT
85 78 84 reusv3 zV¬zNXTIzIXFzTDzVwV¬zNXT¬wNXTIzIXFzT=IwIXFwTyDzV¬zNXTy=IzIXFzT
86 76 85 syl φzVwV¬zNXT¬wNXTIzIXFzT=IwIXFwTyDzV¬zNXTy=IzIXFzT
87 49 86 mpbid φyDzV¬zNXTy=IzIXFzT
88 reusv1 zV¬zNXT∃!yDzV¬zNXTy=IzIXFzTyDzV¬zNXTy=IzIXFzT
89 50 88 syl φ∃!yDzV¬zNXTy=IzIXFzTyDzV¬zNXTy=IzIXFzT
90 87 89 mpbird φ∃!yDzV¬zNXTy=IzIXFzT