Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdh8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdh8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
mapdh8a.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
mapdh8a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
mapdh8a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdh8a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdh8a.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
mapdh8a.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
mapdh8a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
mapdh8a.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdh8a.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
mapdh8a.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
14 |
|
mapdh8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdh8h.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh8h.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdh9a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
mapdh9a.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
19 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝐹 ∈ 𝐷 ) |
21 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
22 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
24 |
1 2 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑈 ∈ LMod ) |
26 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
27 |
3 23 6 24 26 18
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
29 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑧 ∈ 𝑉 ) |
30 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) |
31 |
5 23 25 28 29 30
|
lssneln0 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) |
32 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑤 ∈ 𝑉 ) |
33 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) |
34 |
5 23 25 28 32 33
|
lssneln0 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
35 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑈 ∈ LVec ) |
37 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑋 ∈ 𝑉 ) |
38 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑇 ∈ 𝑉 ) |
39 |
3 6 36 29 37 38 30
|
lspindpi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
40 |
39
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
41 |
40
|
necomd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) ) |
42 |
3 6 36 32 37 38 33
|
lspindpi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
43 |
42
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
44 |
43
|
necomd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
45 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
46 |
42
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 31 34 41 44 45 46 38
|
mapdh8 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) ) |
48 |
47
|
3exp |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) → ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) ) ) ) |
49 |
48
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) ) ) |
50 |
1 2 3 6 14 26 18
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) |
51 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
52 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝐹 ∈ 𝐷 ) |
53 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
54 |
17
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
55 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑧 ∈ 𝑉 ) |
56 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑈 ∈ LVec ) |
57 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑋 ∈ 𝑉 ) |
58 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑇 ∈ 𝑉 ) |
59 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) |
60 |
3 6 56 55 57 58 59
|
lspindpi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) ) |
61 |
60
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
62 |
61
|
necomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) ) |
63 |
10 13 1 12 2 3 4 5 6 7 8 9 11 51 52 53 54 55 62
|
mapdhcl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ∈ 𝐷 ) |
64 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ) |
65 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑈 ∈ LMod ) |
66 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
67 |
5 23 65 66 55 59
|
lssneln0 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) ) |
68 |
10 13 1 12 2 3 4 5 6 7 8 9 11 51 52 53 54 67 63 62
|
mapdheq |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐽 ‘ { ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑧 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ) } ) ) ) ) |
69 |
64 68
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐽 ‘ { ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑧 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) ) } ) ) ) |
70 |
69
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐽 ‘ { ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) } ) ) |
71 |
60
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
72 |
10 13 1 12 2 3 4 5 6 7 8 9 11 51 63 70 67 58 71
|
mapdhcl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ∈ 𝐷 ) |
73 |
72
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ∈ 𝐷 ) ) |
74 |
73
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑉 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ∈ 𝐷 ) ) ) |
75 |
74
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ∈ 𝐷 ) ) ) |
76 |
50 75
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ∈ 𝐷 ) ) |
77 |
|
eleq1w |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ↔ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) |
78 |
77
|
notbid |
⊢ ( 𝑧 = 𝑤 → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ↔ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) |
79 |
|
oteq1 |
⊢ ( 𝑧 = 𝑤 → 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 = 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) |
80 |
|
oteq3 |
⊢ ( 𝑧 = 𝑤 → 〈 𝑋 , 𝐹 , 𝑧 〉 = 〈 𝑋 , 𝐹 , 𝑤 〉 ) |
81 |
80
|
fveq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
82 |
81
|
oteq2d |
⊢ ( 𝑧 = 𝑤 → 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 = 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) |
83 |
79 82
|
eqtrd |
⊢ ( 𝑧 = 𝑤 → 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 = 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) |
84 |
83
|
fveq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) ) |
85 |
78 84
|
reusv3 |
⊢ ( ∃ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ∈ 𝐷 ) → ( ∀ 𝑧 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) ) ↔ ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
86 |
76 85
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) ) ↔ ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
87 |
49 86
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) |
88 |
|
reusv1 |
⊢ ( ∃ 𝑧 ∈ 𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ( ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ↔ ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
89 |
50 88
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ↔ ∃ 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) ) |
90 |
87 89
|
mpbird |
⊢ ( 𝜑 → ∃! 𝑦 ∈ 𝐷 ∀ 𝑧 ∈ 𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ 〈 𝑧 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑧 〉 ) , 𝑇 〉 ) ) ) |