Metamath Proof Explorer


Theorem mapdh9aOLDN

Description: Lemma for part (9) in Baer p. 48. (Contributed by NM, 14-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
mapdh8a.s = ( -g𝑈 )
mapdh8a.o 0 = ( 0g𝑈 )
mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
mapdh8a.r 𝑅 = ( -g𝐶 )
mapdh8a.q 𝑄 = ( 0g𝐶 )
mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh8h.f ( 𝜑𝐹𝐷 )
mapdh8h.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh9a.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh9a.t ( 𝜑𝑇𝑉 )
Assertion mapdh9aOLDN ( 𝜑 → ∃! 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh8a.s = ( -g𝑈 )
5 mapdh8a.o 0 = ( 0g𝑈 )
6 mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh8a.r 𝑅 = ( -g𝐶 )
10 mapdh8a.q 𝑄 = ( 0g𝐶 )
11 mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh8h.f ( 𝜑𝐹𝐷 )
16 mapdh8h.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh9a.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh9a.t ( 𝜑𝑇𝑉 )
19 14 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 15 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝐹𝐷 )
21 16 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
22 17 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
23 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
24 1 2 14 dvhlmod ( 𝜑𝑈 ∈ LMod )
25 24 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑈 ∈ LMod )
26 17 eldifad ( 𝜑𝑋𝑉 )
27 3 23 6 24 26 18 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) )
28 27 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) )
29 simp2l ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑧𝑉 )
30 simp3l ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) )
31 5 23 25 28 29 30 lssneln0 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) )
32 simp2r ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑤𝑉 )
33 simp3r ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) )
34 5 23 25 28 32 33 lssneln0 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
35 1 2 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
36 35 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑈 ∈ LVec )
37 26 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑋𝑉 )
38 18 3ad2ant1 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → 𝑇𝑉 )
39 3 6 36 29 37 38 30 lspindpi ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) )
40 39 simpld ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
41 40 necomd ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) )
42 3 6 36 32 37 38 33 lspindpi ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) )
43 42 simpld ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
44 43 necomd ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
45 39 simprd ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
46 42 simprd ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
47 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 31 34 41 44 45 46 38 mapdh8 ( ( 𝜑 ∧ ( 𝑧𝑉𝑤𝑉 ) ∧ ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) )
48 47 3exp ( 𝜑 → ( ( 𝑧𝑉𝑤𝑉 ) → ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) ) ) )
49 48 ralrimivv ( 𝜑 → ∀ 𝑧𝑉𝑤𝑉 ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) ) )
50 1 2 3 6 14 26 18 dvh3dim ( 𝜑 → ∃ 𝑧𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) )
51 14 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
52 15 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝐹𝐷 )
53 16 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
54 17 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
55 simplr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑧𝑉 )
56 35 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑈 ∈ LVec )
57 26 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑋𝑉 )
58 18 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑇𝑉 )
59 simpr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) )
60 3 6 56 55 57 58 59 lspindpi ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) )
61 60 simpld ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
62 61 necomd ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑧 } ) )
63 10 13 1 12 2 3 4 5 6 7 8 9 11 51 52 53 54 55 62 mapdhcl ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) ∈ 𝐷 )
64 eqidd ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) )
65 24 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑈 ∈ LMod )
66 27 ad2antrr ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∈ ( LSubSp ‘ 𝑈 ) )
67 5 23 65 66 55 59 lssneln0 ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → 𝑧 ∈ ( 𝑉 ∖ { 0 } ) )
68 10 13 1 12 2 3 4 5 6 7 8 9 11 51 52 53 54 67 63 62 mapdheq ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐽 ‘ { ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑧 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) ) } ) ) ) )
69 64 68 mpbid ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐽 ‘ { ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑧 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) ) } ) ) )
70 69 simpld ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑧 } ) ) = ( 𝐽 ‘ { ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) } ) )
71 60 simprd ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑧 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
72 10 13 1 12 2 3 4 5 6 7 8 9 11 51 63 70 67 58 71 mapdhcl ( ( ( 𝜑𝑧𝑉 ) ∧ ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ∈ 𝐷 )
73 72 ex ( ( 𝜑𝑧𝑉 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ∈ 𝐷 ) )
74 73 ancld ( ( 𝜑𝑧𝑉 ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ∈ 𝐷 ) ) )
75 74 reximdva ( 𝜑 → ( ∃ 𝑧𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ∃ 𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ∈ 𝐷 ) ) )
76 50 75 mpd ( 𝜑 → ∃ 𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ∈ 𝐷 ) )
77 eleq1w ( 𝑧 = 𝑤 → ( 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ↔ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) )
78 77 notbid ( 𝑧 = 𝑤 → ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ↔ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) )
79 oteq1 ( 𝑧 = 𝑤 → ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ )
80 oteq3 ( 𝑧 = 𝑤 → ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ = ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ )
81 80 fveq2d ( 𝑧 = 𝑤 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) )
82 81 oteq2d ( 𝑧 = 𝑤 → ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ )
83 79 82 eqtrd ( 𝑧 = 𝑤 → ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ )
84 83 fveq2d ( 𝑧 = 𝑤 → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) )
85 78 84 reusv3 ( ∃ 𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ∈ 𝐷 ) → ( ∀ 𝑧𝑉𝑤𝑉 ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) ) ↔ ∃ 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
86 76 85 syl ( 𝜑 → ( ∀ 𝑧𝑉𝑤𝑉 ( ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) ) ↔ ∃ 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
87 49 86 mpbid ( 𝜑 → ∃ 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) )
88 reusv1 ( ∃ 𝑧𝑉 ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → ( ∃! 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ↔ ∃ 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
89 50 88 syl ( 𝜑 → ( ∃! 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ↔ ∃ 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) ) )
90 87 89 mpbird ( 𝜑 → ∃! 𝑦𝐷𝑧𝑉 ( ¬ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 , 𝑇 } ) → 𝑦 = ( 𝐼 ‘ ⟨ 𝑧 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑧 ⟩ ) , 𝑇 ⟩ ) ) )