Metamath Proof Explorer


Theorem mapdh8

Description: Part (8) in Baer p. 48. Given a reference vector X , the value of function I at a vector T is independent of the choice of auxiliary vectors Y and Z . Unlike Baer's, our version does not require X , Y , and Z to be independent, and also is defined for all Y and Z that are not colinear with X or T . We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates T =/= .0. .) (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
mapdh8a.s = ( -g𝑈 )
mapdh8a.o 0 = ( 0g𝑈 )
mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
mapdh8a.r 𝑅 = ( -g𝐶 )
mapdh8a.q 𝑄 = ( 0g𝐶 )
mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh8h.f ( 𝜑𝐹𝐷 )
mapdh8h.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh8i.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8i.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8i.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8i.xy ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdh8i.xz ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
mapdh8i.yt ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8i.zt ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8.t ( 𝜑𝑇𝑉 )
Assertion mapdh8 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh8a.s = ( -g𝑈 )
5 mapdh8a.o 0 = ( 0g𝑈 )
6 mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh8a.r 𝑅 = ( -g𝐶 )
10 mapdh8a.q 𝑄 = ( 0g𝐶 )
11 mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh8h.f ( 𝜑𝐹𝐷 )
16 mapdh8h.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh8i.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh8i.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh8i.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh8i.xy ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
21 mapdh8i.xz ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
22 mapdh8i.yt ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
23 mapdh8i.zt ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
24 mapdh8.t ( 𝜑𝑇𝑉 )
25 fvexd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ V )
26 10 13 5 18 25 mapdhval0 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 0 ⟩ ) = 𝑄 )
27 fvexd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ∈ V )
28 10 13 5 19 27 mapdhval0 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 0 ⟩ ) = 𝑄 )
29 26 28 eqtr4d ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 0 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 0 ⟩ ) )
30 29 adantr ( ( 𝜑𝑇 = 0 ) → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 0 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 0 ⟩ ) )
31 oteq3 ( 𝑇 = 0 → ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 0 ⟩ )
32 31 fveq2d ( 𝑇 = 0 → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 0 ⟩ ) )
33 32 adantl ( ( 𝜑𝑇 = 0 ) → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 0 ⟩ ) )
34 oteq3 ( 𝑇 = 0 → ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ = ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 0 ⟩ )
35 34 fveq2d ( 𝑇 = 0 → ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 0 ⟩ ) )
36 35 adantl ( ( 𝜑𝑇 = 0 ) → ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 0 ⟩ ) )
37 30 33 36 3eqtr4d ( ( 𝜑𝑇 = 0 ) → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ ) )
38 14 adantr ( ( 𝜑𝑇0 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
39 15 adantr ( ( 𝜑𝑇0 ) → 𝐹𝐷 )
40 16 adantr ( ( 𝜑𝑇0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
41 17 adantr ( ( 𝜑𝑇0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
42 18 adantr ( ( 𝜑𝑇0 ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
43 19 adantr ( ( 𝜑𝑇0 ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
44 20 adantr ( ( 𝜑𝑇0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
45 21 adantr ( ( 𝜑𝑇0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
46 22 adantr ( ( 𝜑𝑇0 ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
47 23 adantr ( ( 𝜑𝑇0 ) → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
48 24 anim1i ( ( 𝜑𝑇0 ) → ( 𝑇𝑉𝑇0 ) )
49 eldifsn ( 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑇𝑉𝑇0 ) )
50 48 49 sylibr ( ( 𝜑𝑇0 ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
51 1 2 3 4 5 6 7 8 9 10 11 12 13 38 39 40 41 42 43 44 45 46 47 50 mapdh8j ( ( 𝜑𝑇0 ) → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ ) )
52 37 51 pm2.61dane ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑍 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) , 𝑇 ⟩ ) )