Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh8a.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdh8a.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
mapdh8a.v |
|- V = ( Base ` U ) |
4 |
|
mapdh8a.s |
|- .- = ( -g ` U ) |
5 |
|
mapdh8a.o |
|- .0. = ( 0g ` U ) |
6 |
|
mapdh8a.n |
|- N = ( LSpan ` U ) |
7 |
|
mapdh8a.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
mapdh8a.d |
|- D = ( Base ` C ) |
9 |
|
mapdh8a.r |
|- R = ( -g ` C ) |
10 |
|
mapdh8a.q |
|- Q = ( 0g ` C ) |
11 |
|
mapdh8a.j |
|- J = ( LSpan ` C ) |
12 |
|
mapdh8a.m |
|- M = ( ( mapd ` K ) ` W ) |
13 |
|
mapdh8a.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
14 |
|
mapdh8a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
15 |
|
mapdh8h.f |
|- ( ph -> F e. D ) |
16 |
|
mapdh8h.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
17 |
|
mapdh8i.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
mapdh8i.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
mapdh8i.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
20 |
|
mapdh8i.xy |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
21 |
|
mapdh8i.xz |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
22 |
|
mapdh8i.yt |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
23 |
|
mapdh8i.zt |
|- ( ph -> ( N ` { Z } ) =/= ( N ` { T } ) ) |
24 |
|
mapdh8.t |
|- ( ph -> T e. V ) |
25 |
|
fvexd |
|- ( ph -> ( I ` <. X , F , Y >. ) e. _V ) |
26 |
10 13 5 18 25
|
mapdhval0 |
|- ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) = Q ) |
27 |
|
fvexd |
|- ( ph -> ( I ` <. X , F , Z >. ) e. _V ) |
28 |
10 13 5 19 27
|
mapdhval0 |
|- ( ph -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) = Q ) |
29 |
26 28
|
eqtr4d |
|- ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ T = .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) |
31 |
|
oteq3 |
|- ( T = .0. -> <. Y , ( I ` <. X , F , Y >. ) , T >. = <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) |
32 |
31
|
fveq2d |
|- ( T = .0. -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) ) |
33 |
32
|
adantl |
|- ( ( ph /\ T = .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) ) |
34 |
|
oteq3 |
|- ( T = .0. -> <. Z , ( I ` <. X , F , Z >. ) , T >. = <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) |
35 |
34
|
fveq2d |
|- ( T = .0. -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) |
36 |
35
|
adantl |
|- ( ( ph /\ T = .0. ) -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) |
37 |
30 33 36
|
3eqtr4d |
|- ( ( ph /\ T = .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) |
38 |
14
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> ( K e. HL /\ W e. H ) ) |
39 |
15
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> F e. D ) |
40 |
16
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
41 |
17
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> X e. ( V \ { .0. } ) ) |
42 |
18
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> Y e. ( V \ { .0. } ) ) |
43 |
19
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> Z e. ( V \ { .0. } ) ) |
44 |
20
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
45 |
21
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
46 |
22
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
47 |
23
|
adantr |
|- ( ( ph /\ T =/= .0. ) -> ( N ` { Z } ) =/= ( N ` { T } ) ) |
48 |
24
|
anim1i |
|- ( ( ph /\ T =/= .0. ) -> ( T e. V /\ T =/= .0. ) ) |
49 |
|
eldifsn |
|- ( T e. ( V \ { .0. } ) <-> ( T e. V /\ T =/= .0. ) ) |
50 |
48 49
|
sylibr |
|- ( ( ph /\ T =/= .0. ) -> T e. ( V \ { .0. } ) ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 38 39 40 41 42 43 44 45 46 47 50
|
mapdh8j |
|- ( ( ph /\ T =/= .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) |
52 |
37 51
|
pm2.61dane |
|- ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) |