| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh8a.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdh8a.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | mapdh8a.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | mapdh8a.s |  |-  .- = ( -g ` U ) | 
						
							| 5 |  | mapdh8a.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | mapdh8a.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdh8a.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdh8a.d |  |-  D = ( Base ` C ) | 
						
							| 9 |  | mapdh8a.r |  |-  R = ( -g ` C ) | 
						
							| 10 |  | mapdh8a.q |  |-  Q = ( 0g ` C ) | 
						
							| 11 |  | mapdh8a.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdh8a.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 13 |  | mapdh8a.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh8a.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | mapdh8h.f |  |-  ( ph -> F e. D ) | 
						
							| 16 |  | mapdh8h.mn |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 17 |  | mapdh8i.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 18 |  | mapdh8i.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 19 |  | mapdh8i.z |  |-  ( ph -> Z e. ( V \ { .0. } ) ) | 
						
							| 20 |  | mapdh8i.xy |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 21 |  | mapdh8i.xz |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) | 
						
							| 22 |  | mapdh8i.yt |  |-  ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) | 
						
							| 23 |  | mapdh8i.zt |  |-  ( ph -> ( N ` { Z } ) =/= ( N ` { T } ) ) | 
						
							| 24 |  | mapdh8.t |  |-  ( ph -> T e. V ) | 
						
							| 25 |  | fvexd |  |-  ( ph -> ( I ` <. X , F , Y >. ) e. _V ) | 
						
							| 26 | 10 13 5 18 25 | mapdhval0 |  |-  ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) = Q ) | 
						
							| 27 |  | fvexd |  |-  ( ph -> ( I ` <. X , F , Z >. ) e. _V ) | 
						
							| 28 | 10 13 5 19 27 | mapdhval0 |  |-  ( ph -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) = Q ) | 
						
							| 29 | 26 28 | eqtr4d |  |-  ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ T = .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) | 
						
							| 31 |  | oteq3 |  |-  ( T = .0. -> <. Y , ( I ` <. X , F , Y >. ) , T >. = <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) | 
						
							| 32 | 31 | fveq2d |  |-  ( T = .0. -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ T = .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Y , ( I ` <. X , F , Y >. ) , .0. >. ) ) | 
						
							| 34 |  | oteq3 |  |-  ( T = .0. -> <. Z , ( I ` <. X , F , Z >. ) , T >. = <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) | 
						
							| 35 | 34 | fveq2d |  |-  ( T = .0. -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ph /\ T = .0. ) -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , .0. >. ) ) | 
						
							| 37 | 30 33 36 | 3eqtr4d |  |-  ( ( ph /\ T = .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) | 
						
							| 38 | 14 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 39 | 15 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> F e. D ) | 
						
							| 40 | 16 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) | 
						
							| 41 | 17 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> X e. ( V \ { .0. } ) ) | 
						
							| 42 | 18 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 43 | 19 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> Z e. ( V \ { .0. } ) ) | 
						
							| 44 | 20 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 45 | 21 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> ( N ` { X } ) =/= ( N ` { Z } ) ) | 
						
							| 46 | 22 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> ( N ` { Y } ) =/= ( N ` { T } ) ) | 
						
							| 47 | 23 | adantr |  |-  ( ( ph /\ T =/= .0. ) -> ( N ` { Z } ) =/= ( N ` { T } ) ) | 
						
							| 48 | 24 | anim1i |  |-  ( ( ph /\ T =/= .0. ) -> ( T e. V /\ T =/= .0. ) ) | 
						
							| 49 |  | eldifsn |  |-  ( T e. ( V \ { .0. } ) <-> ( T e. V /\ T =/= .0. ) ) | 
						
							| 50 | 48 49 | sylibr |  |-  ( ( ph /\ T =/= .0. ) -> T e. ( V \ { .0. } ) ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 9 10 11 12 13 38 39 40 41 42 43 44 45 46 47 50 | mapdh8j |  |-  ( ( ph /\ T =/= .0. ) -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) | 
						
							| 52 | 37 51 | pm2.61dane |  |-  ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) |