Metamath Proof Explorer


Theorem lspprid2

Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses lspprid.v
|- V = ( Base ` W )
lspprid.n
|- N = ( LSpan ` W )
lspprid.w
|- ( ph -> W e. LMod )
lspprid.x
|- ( ph -> X e. V )
lspprid.y
|- ( ph -> Y e. V )
Assertion lspprid2
|- ( ph -> Y e. ( N ` { X , Y } ) )

Proof

Step Hyp Ref Expression
1 lspprid.v
 |-  V = ( Base ` W )
2 lspprid.n
 |-  N = ( LSpan ` W )
3 lspprid.w
 |-  ( ph -> W e. LMod )
4 lspprid.x
 |-  ( ph -> X e. V )
5 lspprid.y
 |-  ( ph -> Y e. V )
6 1 2 3 5 4 lspprid1
 |-  ( ph -> Y e. ( N ` { Y , X } ) )
7 prcom
 |-  { Y , X } = { X , Y }
8 7 fveq2i
 |-  ( N ` { Y , X } ) = ( N ` { X , Y } )
9 6 8 eleqtrdi
 |-  ( ph -> Y e. ( N ` { X , Y } ) )