Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspprid.v | |- V = ( Base ` W ) |
|
lspprid.n | |- N = ( LSpan ` W ) |
||
lspprid.w | |- ( ph -> W e. LMod ) |
||
lspprid.x | |- ( ph -> X e. V ) |
||
lspprid.y | |- ( ph -> Y e. V ) |
||
Assertion | lspprid2 | |- ( ph -> Y e. ( N ` { X , Y } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprid.v | |- V = ( Base ` W ) |
|
2 | lspprid.n | |- N = ( LSpan ` W ) |
|
3 | lspprid.w | |- ( ph -> W e. LMod ) |
|
4 | lspprid.x | |- ( ph -> X e. V ) |
|
5 | lspprid.y | |- ( ph -> Y e. V ) |
|
6 | 1 2 3 5 4 | lspprid1 | |- ( ph -> Y e. ( N ` { Y , X } ) ) |
7 | prcom | |- { Y , X } = { X , Y } |
|
8 | 7 | fveq2i | |- ( N ` { Y , X } ) = ( N ` { X , Y } ) |
9 | 6 8 | eleqtrdi | |- ( ph -> Y e. ( N ` { X , Y } ) ) |