Description: Lemma for hdmap1eu . TODO: combine with hdmap1eu or at least share some hypotheses. (Contributed by NM, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmap1eulem.h | |
|
hdmap1eulem.u | |
||
hdmap1eulem.v | |
||
hdmap1eulem.s | |
||
hdmap1eulem.o | |
||
hdmap1eulem.n | |
||
hdmap1eulem.c | |
||
hdmap1eulem.d | |
||
hdmap1eulem.r | |
||
hdmap1eulem.q | |
||
hdmap1eulem.j | |
||
hdmap1eulem.m | |
||
hdmap1eulem.i | |
||
hdmap1eulem.k | |
||
hdmap1eulem.mn | |
||
hdmap1eulem.x | |
||
hdmap1eulem.f | |
||
hdmap1eulem.y | |
||
hdmap1eulem.l | |
||
Assertion | hdmap1eulem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1eulem.h | |
|
2 | hdmap1eulem.u | |
|
3 | hdmap1eulem.v | |
|
4 | hdmap1eulem.s | |
|
5 | hdmap1eulem.o | |
|
6 | hdmap1eulem.n | |
|
7 | hdmap1eulem.c | |
|
8 | hdmap1eulem.d | |
|
9 | hdmap1eulem.r | |
|
10 | hdmap1eulem.q | |
|
11 | hdmap1eulem.j | |
|
12 | hdmap1eulem.m | |
|
13 | hdmap1eulem.i | |
|
14 | hdmap1eulem.k | |
|
15 | hdmap1eulem.mn | |
|
16 | hdmap1eulem.x | |
|
17 | hdmap1eulem.f | |
|
18 | hdmap1eulem.y | |
|
19 | hdmap1eulem.l | |
|
20 | 1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18 | mapdh9a | |
21 | 14 | ad2antrr | |
22 | 16 | ad2antrr | |
23 | 17 | ad2antrr | |
24 | simplr | |
|
25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19 | hdmap1valc | |
26 | 25 | oteq2d | |
27 | 26 | fveq2d | |
28 | elun1 | |
|
29 | 28 | con3i | |
30 | 14 | ad2antrr | |
31 | eqid | |
|
32 | 1 2 14 | dvhlmod | |
33 | 32 | ad2antrr | |
34 | 16 | eldifad | |
35 | 34 | ad2antrr | |
36 | 3 31 6 | lspsncl | |
37 | 33 35 36 | syl2anc | |
38 | simplr | |
|
39 | simpr | |
|
40 | 5 31 33 37 38 39 | lssneln0 | |
41 | 17 | ad2antrr | |
42 | 15 | ad2antrr | |
43 | 16 | ad2antrr | |
44 | 3 6 33 38 35 39 | lspsnne2 | |
45 | 44 | necomd | |
46 | 10 19 1 12 2 3 4 5 6 7 8 9 11 30 41 42 43 38 45 | mapdhcl | |
47 | 18 | ad2antrr | |
48 | 1 2 3 4 5 6 7 8 9 10 11 12 13 30 40 46 47 19 | hdmap1valc | |
49 | 29 48 | sylan2 | |
50 | 27 49 | eqtrd | |
51 | 50 | eqeq2d | |
52 | 51 | pm5.74da | |
53 | 52 | ralbidva | |
54 | 53 | reubidv | |
55 | 20 54 | mpbird | |