Metamath Proof Explorer


Theorem hdmap1eulem

Description: Lemma for hdmap1eu . TODO: combine with hdmap1eu or at least share some hypotheses. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1eulem.h H=LHypK
hdmap1eulem.u U=DVecHKW
hdmap1eulem.v V=BaseU
hdmap1eulem.s -˙=-U
hdmap1eulem.o 0˙=0U
hdmap1eulem.n N=LSpanU
hdmap1eulem.c C=LCDualKW
hdmap1eulem.d D=BaseC
hdmap1eulem.r R=-C
hdmap1eulem.q Q=0C
hdmap1eulem.j J=LSpanC
hdmap1eulem.m M=mapdKW
hdmap1eulem.i I=HDMap1KW
hdmap1eulem.k φKHLWH
hdmap1eulem.mn φMNX=JF
hdmap1eulem.x φXV0˙
hdmap1eulem.f φFD
hdmap1eulem.y φTV
hdmap1eulem.l L=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
Assertion hdmap1eulem φ∃!yDzV¬zNXNTy=IzIXFzT

Proof

Step Hyp Ref Expression
1 hdmap1eulem.h H=LHypK
2 hdmap1eulem.u U=DVecHKW
3 hdmap1eulem.v V=BaseU
4 hdmap1eulem.s -˙=-U
5 hdmap1eulem.o 0˙=0U
6 hdmap1eulem.n N=LSpanU
7 hdmap1eulem.c C=LCDualKW
8 hdmap1eulem.d D=BaseC
9 hdmap1eulem.r R=-C
10 hdmap1eulem.q Q=0C
11 hdmap1eulem.j J=LSpanC
12 hdmap1eulem.m M=mapdKW
13 hdmap1eulem.i I=HDMap1KW
14 hdmap1eulem.k φKHLWH
15 hdmap1eulem.mn φMNX=JF
16 hdmap1eulem.x φXV0˙
17 hdmap1eulem.f φFD
18 hdmap1eulem.y φTV
19 hdmap1eulem.l L=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
20 1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18 mapdh9a φ∃!yDzV¬zNXNTy=LzLXFzT
21 14 ad2antrr φzV¬zNXNTKHLWH
22 16 ad2antrr φzV¬zNXNTXV0˙
23 17 ad2antrr φzV¬zNXNTFD
24 simplr φzV¬zNXNTzV
25 1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19 hdmap1valc φzV¬zNXNTIXFz=LXFz
26 25 oteq2d φzV¬zNXNTzIXFzT=zLXFzT
27 26 fveq2d φzV¬zNXNTIzIXFzT=IzLXFzT
28 elun1 zNXzNXNT
29 28 con3i ¬zNXNT¬zNX
30 14 ad2antrr φzV¬zNXKHLWH
31 eqid LSubSpU=LSubSpU
32 1 2 14 dvhlmod φULMod
33 32 ad2antrr φzV¬zNXULMod
34 16 eldifad φXV
35 34 ad2antrr φzV¬zNXXV
36 3 31 6 lspsncl ULModXVNXLSubSpU
37 33 35 36 syl2anc φzV¬zNXNXLSubSpU
38 simplr φzV¬zNXzV
39 simpr φzV¬zNX¬zNX
40 5 31 33 37 38 39 lssneln0 φzV¬zNXzV0˙
41 17 ad2antrr φzV¬zNXFD
42 15 ad2antrr φzV¬zNXMNX=JF
43 16 ad2antrr φzV¬zNXXV0˙
44 3 6 33 38 35 39 lspsnne2 φzV¬zNXNzNX
45 44 necomd φzV¬zNXNXNz
46 10 19 1 12 2 3 4 5 6 7 8 9 11 30 41 42 43 38 45 mapdhcl φzV¬zNXLXFzD
47 18 ad2antrr φzV¬zNXTV
48 1 2 3 4 5 6 7 8 9 10 11 12 13 30 40 46 47 19 hdmap1valc φzV¬zNXIzLXFzT=LzLXFzT
49 29 48 sylan2 φzV¬zNXNTIzLXFzT=LzLXFzT
50 27 49 eqtrd φzV¬zNXNTIzIXFzT=LzLXFzT
51 50 eqeq2d φzV¬zNXNTy=IzIXFzTy=LzLXFzT
52 51 pm5.74da φzV¬zNXNTy=IzIXFzT¬zNXNTy=LzLXFzT
53 52 ralbidva φzV¬zNXNTy=IzIXFzTzV¬zNXNTy=LzLXFzT
54 53 reubidv φ∃!yDzV¬zNXNTy=IzIXFzT∃!yDzV¬zNXNTy=LzLXFzT
55 20 54 mpbird φ∃!yDzV¬zNXNTy=IzIXFzT