Metamath Proof Explorer


Theorem hdmap1eulem

Description: Lemma for hdmap1eu . TODO: combine with hdmap1eu or at least share some hypotheses. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1eulem.h H = LHyp K
hdmap1eulem.u U = DVecH K W
hdmap1eulem.v V = Base U
hdmap1eulem.s - ˙ = - U
hdmap1eulem.o 0 ˙ = 0 U
hdmap1eulem.n N = LSpan U
hdmap1eulem.c C = LCDual K W
hdmap1eulem.d D = Base C
hdmap1eulem.r R = - C
hdmap1eulem.q Q = 0 C
hdmap1eulem.j J = LSpan C
hdmap1eulem.m M = mapd K W
hdmap1eulem.i I = HDMap1 K W
hdmap1eulem.k φ K HL W H
hdmap1eulem.mn φ M N X = J F
hdmap1eulem.x φ X V 0 ˙
hdmap1eulem.f φ F D
hdmap1eulem.y φ T V
hdmap1eulem.l L = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
Assertion hdmap1eulem φ ∃! y D z V ¬ z N X N T y = I z I X F z T

Proof

Step Hyp Ref Expression
1 hdmap1eulem.h H = LHyp K
2 hdmap1eulem.u U = DVecH K W
3 hdmap1eulem.v V = Base U
4 hdmap1eulem.s - ˙ = - U
5 hdmap1eulem.o 0 ˙ = 0 U
6 hdmap1eulem.n N = LSpan U
7 hdmap1eulem.c C = LCDual K W
8 hdmap1eulem.d D = Base C
9 hdmap1eulem.r R = - C
10 hdmap1eulem.q Q = 0 C
11 hdmap1eulem.j J = LSpan C
12 hdmap1eulem.m M = mapd K W
13 hdmap1eulem.i I = HDMap1 K W
14 hdmap1eulem.k φ K HL W H
15 hdmap1eulem.mn φ M N X = J F
16 hdmap1eulem.x φ X V 0 ˙
17 hdmap1eulem.f φ F D
18 hdmap1eulem.y φ T V
19 hdmap1eulem.l L = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
20 1 2 3 4 5 6 7 8 9 10 11 12 19 14 17 15 16 18 mapdh9a φ ∃! y D z V ¬ z N X N T y = L z L X F z T
21 14 ad2antrr φ z V ¬ z N X N T K HL W H
22 16 ad2antrr φ z V ¬ z N X N T X V 0 ˙
23 17 ad2antrr φ z V ¬ z N X N T F D
24 simplr φ z V ¬ z N X N T z V
25 1 2 3 4 5 6 7 8 9 10 11 12 13 21 22 23 24 19 hdmap1valc φ z V ¬ z N X N T I X F z = L X F z
26 25 oteq2d φ z V ¬ z N X N T z I X F z T = z L X F z T
27 26 fveq2d φ z V ¬ z N X N T I z I X F z T = I z L X F z T
28 elun1 z N X z N X N T
29 28 con3i ¬ z N X N T ¬ z N X
30 14 ad2antrr φ z V ¬ z N X K HL W H
31 eqid LSubSp U = LSubSp U
32 1 2 14 dvhlmod φ U LMod
33 32 ad2antrr φ z V ¬ z N X U LMod
34 16 eldifad φ X V
35 34 ad2antrr φ z V ¬ z N X X V
36 3 31 6 lspsncl U LMod X V N X LSubSp U
37 33 35 36 syl2anc φ z V ¬ z N X N X LSubSp U
38 simplr φ z V ¬ z N X z V
39 simpr φ z V ¬ z N X ¬ z N X
40 5 31 33 37 38 39 lssneln0 φ z V ¬ z N X z V 0 ˙
41 17 ad2antrr φ z V ¬ z N X F D
42 15 ad2antrr φ z V ¬ z N X M N X = J F
43 16 ad2antrr φ z V ¬ z N X X V 0 ˙
44 3 6 33 38 35 39 lspsnne2 φ z V ¬ z N X N z N X
45 44 necomd φ z V ¬ z N X N X N z
46 10 19 1 12 2 3 4 5 6 7 8 9 11 30 41 42 43 38 45 mapdhcl φ z V ¬ z N X L X F z D
47 18 ad2antrr φ z V ¬ z N X T V
48 1 2 3 4 5 6 7 8 9 10 11 12 13 30 40 46 47 19 hdmap1valc φ z V ¬ z N X I z L X F z T = L z L X F z T
49 29 48 sylan2 φ z V ¬ z N X N T I z L X F z T = L z L X F z T
50 27 49 eqtrd φ z V ¬ z N X N T I z I X F z T = L z L X F z T
51 50 eqeq2d φ z V ¬ z N X N T y = I z I X F z T y = L z L X F z T
52 51 pm5.74da φ z V ¬ z N X N T y = I z I X F z T ¬ z N X N T y = L z L X F z T
53 52 ralbidva φ z V ¬ z N X N T y = I z I X F z T z V ¬ z N X N T y = L z L X F z T
54 53 reubidv φ ∃! y D z V ¬ z N X N T y = I z I X F z T ∃! y D z V ¬ z N X N T y = L z L X F z T
55 20 54 mpbird φ ∃! y D z V ¬ z N X N T y = I z I X F z T