Metamath Proof Explorer


Theorem hdmap1eu

Description: Convert mapdh9a to use the HDMap1 notation. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1eu.h H=LHypK
hdmap1eu.u U=DVecHKW
hdmap1eu.v V=BaseU
hdmap1eu.o 0˙=0U
hdmap1eu.n N=LSpanU
hdmap1eu.c C=LCDualKW
hdmap1eu.d D=BaseC
hdmap1eu.l L=LSpanC
hdmap1eu.m M=mapdKW
hdmap1eu.i I=HDMap1KW
hdmap1eu.k φKHLWH
hdmap1eu.mn φMNX=LF
hdmap1eu.x φXV0˙
hdmap1eu.f φFD
hdmap1eu.t φTV
Assertion hdmap1eu φ∃!yDzV¬zNXNTy=IzIXFzT

Proof

Step Hyp Ref Expression
1 hdmap1eu.h H=LHypK
2 hdmap1eu.u U=DVecHKW
3 hdmap1eu.v V=BaseU
4 hdmap1eu.o 0˙=0U
5 hdmap1eu.n N=LSpanU
6 hdmap1eu.c C=LCDualKW
7 hdmap1eu.d D=BaseC
8 hdmap1eu.l L=LSpanC
9 hdmap1eu.m M=mapdKW
10 hdmap1eu.i I=HDMap1KW
11 hdmap1eu.k φKHLWH
12 hdmap1eu.mn φMNX=LF
13 hdmap1eu.x φXV0˙
14 hdmap1eu.f φFD
15 hdmap1eu.t φTV
16 eqid -U=-U
17 eqid -C=-C
18 eqid 0C=0C
19 eqid xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch=xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch
20 19 hdmap1cbv xVif2ndx=0˙0CιhD|MN2ndx=LhMN1st1stx-U2ndx=L2nd1stx-Ch=wVif2ndw=0˙0CιgD|MN2ndw=LgMN1st1stw-U2ndw=L2nd1stw-Cg
21 1 2 3 16 4 5 6 7 17 18 8 9 10 11 12 13 14 15 20 hdmap1eulem φ∃!yDzV¬zNXNTy=IzIXFzT