Metamath Proof Explorer


Theorem hdmap1cbv

Description: Frequently used lemma to change bound variables in L hypothesis. (Contributed by NM, 15-May-2015)

Ref Expression
Hypothesis hdmap1cbv.l L = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
Assertion hdmap1cbv L = y V if 2 nd y = 0 ˙ Q ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i

Proof

Step Hyp Ref Expression
1 hdmap1cbv.l L = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
2 fveq2 x = y 2 nd x = 2 nd y
3 2 eqeq1d x = y 2 nd x = 0 ˙ 2 nd y = 0 ˙
4 2 sneqd x = y 2 nd x = 2 nd y
5 4 fveq2d x = y N 2 nd x = N 2 nd y
6 5 fveq2d x = y M N 2 nd x = M N 2 nd y
7 6 eqeq1d x = y M N 2 nd x = J h M N 2 nd y = J h
8 2fveq3 x = y 1 st 1 st x = 1 st 1 st y
9 8 2 oveq12d x = y 1 st 1 st x - ˙ 2 nd x = 1 st 1 st y - ˙ 2 nd y
10 9 sneqd x = y 1 st 1 st x - ˙ 2 nd x = 1 st 1 st y - ˙ 2 nd y
11 10 fveq2d x = y N 1 st 1 st x - ˙ 2 nd x = N 1 st 1 st y - ˙ 2 nd y
12 11 fveq2d x = y M N 1 st 1 st x - ˙ 2 nd x = M N 1 st 1 st y - ˙ 2 nd y
13 2fveq3 x = y 2 nd 1 st x = 2 nd 1 st y
14 13 oveq1d x = y 2 nd 1 st x R h = 2 nd 1 st y R h
15 14 sneqd x = y 2 nd 1 st x R h = 2 nd 1 st y R h
16 15 fveq2d x = y J 2 nd 1 st x R h = J 2 nd 1 st y R h
17 12 16 eqeq12d x = y M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h
18 7 17 anbi12d x = y M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h
19 18 riotabidv x = y ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h
20 3 19 ifbieq2d x = y if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = if 2 nd y = 0 ˙ Q ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h
21 20 cbvmptv x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = y V if 2 nd y = 0 ˙ Q ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h
22 sneq h = i h = i
23 22 fveq2d h = i J h = J i
24 23 eqeq2d h = i M N 2 nd y = J h M N 2 nd y = J i
25 oveq2 h = i 2 nd 1 st y R h = 2 nd 1 st y R i
26 25 sneqd h = i 2 nd 1 st y R h = 2 nd 1 st y R i
27 26 fveq2d h = i J 2 nd 1 st y R h = J 2 nd 1 st y R i
28 27 eqeq2d h = i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i
29 24 28 anbi12d h = i M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i
30 29 cbvriotavw ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h = ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i
31 ifeq2 ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h = ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i if 2 nd y = 0 ˙ Q ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h = if 2 nd y = 0 ˙ Q ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i
32 30 31 ax-mp if 2 nd y = 0 ˙ Q ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h = if 2 nd y = 0 ˙ Q ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i
33 32 mpteq2i y V if 2 nd y = 0 ˙ Q ι h D | M N 2 nd y = J h M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R h = y V if 2 nd y = 0 ˙ Q ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i
34 1 21 33 3eqtri L = y V if 2 nd y = 0 ˙ Q ι i D | M N 2 nd y = J i M N 1 st 1 st y - ˙ 2 nd y = J 2 nd 1 st y R i