Metamath Proof Explorer


Theorem hdmap1cbv

Description: Frequently used lemma to change bound variables in L hypothesis. (Contributed by NM, 15-May-2015)

Ref Expression
Hypothesis hdmap1cbv.l L=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
Assertion hdmap1cbv L=yVif2ndy=0˙QιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi

Proof

Step Hyp Ref Expression
1 hdmap1cbv.l L=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
2 fveq2 x=y2ndx=2ndy
3 2 eqeq1d x=y2ndx=0˙2ndy=0˙
4 2 sneqd x=y2ndx=2ndy
5 4 fveq2d x=yN2ndx=N2ndy
6 5 fveq2d x=yMN2ndx=MN2ndy
7 6 eqeq1d x=yMN2ndx=JhMN2ndy=Jh
8 2fveq3 x=y1st1stx=1st1sty
9 8 2 oveq12d x=y1st1stx-˙2ndx=1st1sty-˙2ndy
10 9 sneqd x=y1st1stx-˙2ndx=1st1sty-˙2ndy
11 10 fveq2d x=yN1st1stx-˙2ndx=N1st1sty-˙2ndy
12 11 fveq2d x=yMN1st1stx-˙2ndx=MN1st1sty-˙2ndy
13 2fveq3 x=y2nd1stx=2nd1sty
14 13 oveq1d x=y2nd1stxRh=2nd1styRh
15 14 sneqd x=y2nd1stxRh=2nd1styRh
16 15 fveq2d x=yJ2nd1stxRh=J2nd1styRh
17 12 16 eqeq12d x=yMN1st1stx-˙2ndx=J2nd1stxRhMN1st1sty-˙2ndy=J2nd1styRh
18 7 17 anbi12d x=yMN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhMN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh
19 18 riotabidv x=yιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=ιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh
20 3 19 ifbieq2d x=yif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=if2ndy=0˙QιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh
21 20 cbvmptv xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=yVif2ndy=0˙QιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh
22 sneq h=ih=i
23 22 fveq2d h=iJh=Ji
24 23 eqeq2d h=iMN2ndy=JhMN2ndy=Ji
25 oveq2 h=i2nd1styRh=2nd1styRi
26 25 sneqd h=i2nd1styRh=2nd1styRi
27 26 fveq2d h=iJ2nd1styRh=J2nd1styRi
28 27 eqeq2d h=iMN1st1sty-˙2ndy=J2nd1styRhMN1st1sty-˙2ndy=J2nd1styRi
29 24 28 anbi12d h=iMN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRhMN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi
30 29 cbvriotavw ιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh=ιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi
31 ifeq2 ιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh=ιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRiif2ndy=0˙QιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh=if2ndy=0˙QιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi
32 30 31 ax-mp if2ndy=0˙QιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh=if2ndy=0˙QιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi
33 32 mpteq2i yVif2ndy=0˙QιhD|MN2ndy=JhMN1st1sty-˙2ndy=J2nd1styRh=yVif2ndy=0˙QιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi
34 1 21 33 3eqtri L=yVif2ndy=0˙QιiD|MN2ndy=JiMN1st1sty-˙2ndy=J2nd1styRi