Metamath Proof Explorer


Theorem hdmap1valc

Description: Connect the value of the preliminary map from vectors to functionals I to the hypothesis L used by earlier theorems. Note: the X e. ( V \ { .0. } ) hypothesis could be the more general X e. V but the former will be easier to use. TODO: use the I function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1valc.h
|- H = ( LHyp ` K )
hdmap1valc.u
|- U = ( ( DVecH ` K ) ` W )
hdmap1valc.v
|- V = ( Base ` U )
hdmap1valc.s
|- .- = ( -g ` U )
hdmap1valc.o
|- .0. = ( 0g ` U )
hdmap1valc.n
|- N = ( LSpan ` U )
hdmap1valc.c
|- C = ( ( LCDual ` K ) ` W )
hdmap1valc.d
|- D = ( Base ` C )
hdmap1valc.r
|- R = ( -g ` C )
hdmap1valc.q
|- Q = ( 0g ` C )
hdmap1valc.j
|- J = ( LSpan ` C )
hdmap1valc.m
|- M = ( ( mapd ` K ) ` W )
hdmap1valc.i
|- I = ( ( HDMap1 ` K ) ` W )
hdmap1valc.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmap1valc.x
|- ( ph -> X e. ( V \ { .0. } ) )
hdmap1valc.f
|- ( ph -> F e. D )
hdmap1valc.y
|- ( ph -> Y e. V )
hdmap1valc.l
|- L = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
Assertion hdmap1valc
|- ( ph -> ( I ` <. X , F , Y >. ) = ( L ` <. X , F , Y >. ) )

Proof

Step Hyp Ref Expression
1 hdmap1valc.h
 |-  H = ( LHyp ` K )
2 hdmap1valc.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmap1valc.v
 |-  V = ( Base ` U )
4 hdmap1valc.s
 |-  .- = ( -g ` U )
5 hdmap1valc.o
 |-  .0. = ( 0g ` U )
6 hdmap1valc.n
 |-  N = ( LSpan ` U )
7 hdmap1valc.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hdmap1valc.d
 |-  D = ( Base ` C )
9 hdmap1valc.r
 |-  R = ( -g ` C )
10 hdmap1valc.q
 |-  Q = ( 0g ` C )
11 hdmap1valc.j
 |-  J = ( LSpan ` C )
12 hdmap1valc.m
 |-  M = ( ( mapd ` K ) ` W )
13 hdmap1valc.i
 |-  I = ( ( HDMap1 ` K ) ` W )
14 hdmap1valc.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 hdmap1valc.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
16 hdmap1valc.f
 |-  ( ph -> F e. D )
17 hdmap1valc.y
 |-  ( ph -> Y e. V )
18 hdmap1valc.l
 |-  L = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
19 15 eldifad
 |-  ( ph -> X e. V )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 16 17 hdmap1val
 |-  ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ g e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { g } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R g ) } ) ) ) ) )
21 18 hdmap1cbv
 |-  L = ( w e. _V |-> if ( ( 2nd ` w ) = .0. , Q , ( iota_ g e. D ( ( M ` ( N ` { ( 2nd ` w ) } ) ) = ( J ` { g } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` w ) ) .- ( 2nd ` w ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` w ) ) R g ) } ) ) ) ) )
22 10 21 19 16 17 mapdhval
 |-  ( ph -> ( L ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ g e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { g } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R g ) } ) ) ) ) )
23 20 22 eqtr4d
 |-  ( ph -> ( I ` <. X , F , Y >. ) = ( L ` <. X , F , Y >. ) )