Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1valc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1valc.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1valc.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1valc.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
hdmap1valc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hdmap1valc.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
hdmap1valc.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap1valc.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
hdmap1valc.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
hdmap1valc.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
hdmap1valc.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
hdmap1valc.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap1valc.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmap1valc.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
hdmap1valc.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
16 |
|
hdmap1valc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
17 |
|
hdmap1valc.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
18 |
|
hdmap1valc.l |
⊢ 𝐿 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
19 |
15
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 16 17
|
hdmap1val |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( 𝑌 = 0 , 𝑄 , ( ℩ 𝑔 ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝑔 ) } ) ) ) ) ) |
21 |
18
|
hdmap1cbv |
⊢ 𝐿 = ( 𝑤 ∈ V ↦ if ( ( 2nd ‘ 𝑤 ) = 0 , 𝑄 , ( ℩ 𝑔 ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑤 ) } ) ) = ( 𝐽 ‘ { 𝑔 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) − ( 2nd ‘ 𝑤 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) 𝑅 𝑔 ) } ) ) ) ) ) |
22 |
10 21 19 16 17
|
mapdhval |
⊢ ( 𝜑 → ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( 𝑌 = 0 , 𝑄 , ( ℩ 𝑔 ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑔 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝑔 ) } ) ) ) ) ) |
23 |
20 22
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = ( 𝐿 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) |