Step |
Hyp |
Ref |
Expression |
1 |
|
hdmap1val.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmap1fval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmap1fval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmap1fval.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
hdmap1fval.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
hdmap1fval.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
hdmap1fval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmap1fval.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
hdmap1fval.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
hdmap1fval.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
hdmap1fval.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
hdmap1fval.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
hdmap1fval.i |
⊢ 𝐼 = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmap1fval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
hdmap1val.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
16 |
|
hdmap1val.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
17 |
|
hdmap1val.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
18 |
|
df-ot |
⊢ 〈 𝑋 , 𝐹 , 𝑌 〉 = 〈 〈 𝑋 , 𝐹 〉 , 𝑌 〉 |
19 |
|
opelxp |
⊢ ( 〈 𝑋 , 𝐹 〉 ∈ ( 𝑉 × 𝐷 ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ) ) |
20 |
15 16 19
|
sylanbrc |
⊢ ( 𝜑 → 〈 𝑋 , 𝐹 〉 ∈ ( 𝑉 × 𝐷 ) ) |
21 |
|
opelxp |
⊢ ( 〈 〈 𝑋 , 𝐹 〉 , 𝑌 〉 ∈ ( ( 𝑉 × 𝐷 ) × 𝑉 ) ↔ ( 〈 𝑋 , 𝐹 〉 ∈ ( 𝑉 × 𝐷 ) ∧ 𝑌 ∈ 𝑉 ) ) |
22 |
20 17 21
|
sylanbrc |
⊢ ( 𝜑 → 〈 〈 𝑋 , 𝐹 〉 , 𝑌 〉 ∈ ( ( 𝑉 × 𝐷 ) × 𝑉 ) ) |
23 |
18 22
|
eqeltrid |
⊢ ( 𝜑 → 〈 𝑋 , 𝐹 , 𝑌 〉 ∈ ( ( 𝑉 × 𝐷 ) × 𝑉 ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 23
|
hdmap1vallem |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
25 |
|
ot3rdg |
⊢ ( 𝑌 ∈ 𝑉 → ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝑌 ) |
26 |
17 25
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝑌 ) |
27 |
26
|
eqeq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 ↔ 𝑌 = 0 ) ) |
28 |
26
|
sneqd |
⊢ ( 𝜑 → { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } = { 𝑌 } ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
30 |
29
|
fveqeq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ) ) |
31 |
|
ot1stg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑌 ∈ 𝑉 ) → ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝑋 ) |
32 |
15 16 17 31
|
syl3anc |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝑋 ) |
33 |
32 26
|
oveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = ( 𝑋 − 𝑌 ) ) |
34 |
33
|
sneqd |
⊢ ( 𝜑 → { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } = { ( 𝑋 − 𝑌 ) } ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) |
36 |
35
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ) |
37 |
|
ot2ndg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝑌 ∈ 𝑉 ) → ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝐹 ) |
38 |
15 16 17 37
|
syl3anc |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝐹 ) |
39 |
38
|
oveq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) = ( 𝐹 𝑅 ℎ ) ) |
40 |
39
|
sneqd |
⊢ ( 𝜑 → { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } = { ( 𝐹 𝑅 ℎ ) } ) |
41 |
40
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) |
42 |
36 41
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) |
43 |
30 42
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
44 |
43
|
riotabidv |
⊢ ( 𝜑 → ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
45 |
27 44
|
ifbieq2d |
⊢ ( 𝜑 → if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) = if ( 𝑌 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) |
46 |
24 45
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( 𝑌 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) |