Metamath Proof Explorer


Theorem hdmap1val

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Restatement of mapdhval .) TODO: change I = ( x e. _V |-> ... to ( ph -> ( I<. X , F , Y > ) = ... in e.g. mapdh8 to shorten proofs with no $d on x . (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmap1val.h H = LHyp K
hdmap1fval.u U = DVecH K W
hdmap1fval.v V = Base U
hdmap1fval.s - ˙ = - U
hdmap1fval.o 0 ˙ = 0 U
hdmap1fval.n N = LSpan U
hdmap1fval.c C = LCDual K W
hdmap1fval.d D = Base C
hdmap1fval.r R = - C
hdmap1fval.q Q = 0 C
hdmap1fval.j J = LSpan C
hdmap1fval.m M = mapd K W
hdmap1fval.i I = HDMap1 K W
hdmap1fval.k φ K A W H
hdmap1val.x φ X V
hdmap1val.f φ F D
hdmap1val.y φ Y V
Assertion hdmap1val φ I X F Y = if Y = 0 ˙ Q ι h D | M N Y = J h M N X - ˙ Y = J F R h

Proof

Step Hyp Ref Expression
1 hdmap1val.h H = LHyp K
2 hdmap1fval.u U = DVecH K W
3 hdmap1fval.v V = Base U
4 hdmap1fval.s - ˙ = - U
5 hdmap1fval.o 0 ˙ = 0 U
6 hdmap1fval.n N = LSpan U
7 hdmap1fval.c C = LCDual K W
8 hdmap1fval.d D = Base C
9 hdmap1fval.r R = - C
10 hdmap1fval.q Q = 0 C
11 hdmap1fval.j J = LSpan C
12 hdmap1fval.m M = mapd K W
13 hdmap1fval.i I = HDMap1 K W
14 hdmap1fval.k φ K A W H
15 hdmap1val.x φ X V
16 hdmap1val.f φ F D
17 hdmap1val.y φ Y V
18 df-ot X F Y = X F Y
19 opelxp X F V × D X V F D
20 15 16 19 sylanbrc φ X F V × D
21 opelxp X F Y V × D × V X F V × D Y V
22 20 17 21 sylanbrc φ X F Y V × D × V
23 18 22 eqeltrid φ X F Y V × D × V
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 23 hdmap1vallem φ I X F Y = if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
25 ot3rdg Y V 2 nd X F Y = Y
26 17 25 syl φ 2 nd X F Y = Y
27 26 eqeq1d φ 2 nd X F Y = 0 ˙ Y = 0 ˙
28 26 sneqd φ 2 nd X F Y = Y
29 28 fveq2d φ N 2 nd X F Y = N Y
30 29 fveqeq2d φ M N 2 nd X F Y = J h M N Y = J h
31 ot1stg X V F D Y V 1 st 1 st X F Y = X
32 15 16 17 31 syl3anc φ 1 st 1 st X F Y = X
33 32 26 oveq12d φ 1 st 1 st X F Y - ˙ 2 nd X F Y = X - ˙ Y
34 33 sneqd φ 1 st 1 st X F Y - ˙ 2 nd X F Y = X - ˙ Y
35 34 fveq2d φ N 1 st 1 st X F Y - ˙ 2 nd X F Y = N X - ˙ Y
36 35 fveq2d φ M N 1 st 1 st X F Y - ˙ 2 nd X F Y = M N X - ˙ Y
37 ot2ndg X V F D Y V 2 nd 1 st X F Y = F
38 15 16 17 37 syl3anc φ 2 nd 1 st X F Y = F
39 38 oveq1d φ 2 nd 1 st X F Y R h = F R h
40 39 sneqd φ 2 nd 1 st X F Y R h = F R h
41 40 fveq2d φ J 2 nd 1 st X F Y R h = J F R h
42 36 41 eqeq12d φ M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h M N X - ˙ Y = J F R h
43 30 42 anbi12d φ M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h M N Y = J h M N X - ˙ Y = J F R h
44 43 riotabidv φ ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h = ι h D | M N Y = J h M N X - ˙ Y = J F R h
45 27 44 ifbieq2d φ if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h = if Y = 0 ˙ Q ι h D | M N Y = J h M N X - ˙ Y = J F R h
46 24 45 eqtrd φ I X F Y = if Y = 0 ˙ Q ι h D | M N Y = J h M N X - ˙ Y = J F R h