Metamath Proof Explorer


Theorem hdmap1val0

Description: Value of preliminary map from vectors to functionals at zero. (Restated mapdhval0 .) (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmap1val0.h H = LHyp K
hdmap1val0.u U = DVecH K W
hdmap1val0.v V = Base U
hdmap1val0.o 0 ˙ = 0 U
hdmap1val0.c C = LCDual K W
hdmap1val0.d D = Base C
hdmap1val0.q Q = 0 C
hdmap1val0.s I = HDMap1 K W
hdmap1val0.k φ K HL W H
hdmap1val0.f φ F D
hdmap1val0.x φ X V
Assertion hdmap1val0 φ I X F 0 ˙ = Q

Proof

Step Hyp Ref Expression
1 hdmap1val0.h H = LHyp K
2 hdmap1val0.u U = DVecH K W
3 hdmap1val0.v V = Base U
4 hdmap1val0.o 0 ˙ = 0 U
5 hdmap1val0.c C = LCDual K W
6 hdmap1val0.d D = Base C
7 hdmap1val0.q Q = 0 C
8 hdmap1val0.s I = HDMap1 K W
9 hdmap1val0.k φ K HL W H
10 hdmap1val0.f φ F D
11 hdmap1val0.x φ X V
12 eqid - U = - U
13 eqid LSpan U = LSpan U
14 eqid - C = - C
15 eqid LSpan C = LSpan C
16 eqid mapd K W = mapd K W
17 1 2 9 dvhlmod φ U LMod
18 3 4 lmod0vcl U LMod 0 ˙ V
19 17 18 syl φ 0 ˙ V
20 1 2 3 12 4 13 5 6 14 7 15 16 8 9 11 10 19 hdmap1val φ I X F 0 ˙ = if 0 ˙ = 0 ˙ Q ι h D | mapd K W LSpan U 0 ˙ = LSpan C h mapd K W LSpan U X - U 0 ˙ = LSpan C F - C h
21 eqid 0 ˙ = 0 ˙
22 21 iftruei if 0 ˙ = 0 ˙ Q ι h D | mapd K W LSpan U 0 ˙ = LSpan C h mapd K W LSpan U X - U 0 ˙ = LSpan C F - C h = Q
23 20 22 eqtrdi φ I X F 0 ˙ = Q