Metamath Proof Explorer


Theorem hdmap1val2

Description: Value of preliminary map from vectors to functionals in the closed kernel dual space, for nonzero Y . (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h H = LHyp K
hdmap1val2.u U = DVecH K W
hdmap1val2.v V = Base U
hdmap1val2.s - ˙ = - U
hdmap1val2.o 0 ˙ = 0 U
hdmap1val2.n N = LSpan U
hdmap1val2.c C = LCDual K W
hdmap1val2.d D = Base C
hdmap1val2.r R = - C
hdmap1val2.l L = LSpan C
hdmap1val2.m M = mapd K W
hdmap1val2.i I = HDMap1 K W
hdmap1val2.k φ K HL W H
hdmap1val2.x φ X V
hdmap1val2.f φ F D
hdmap1val2.y φ Y V 0 ˙
Assertion hdmap1val2 φ I X F Y = ι h D | M N Y = L h M N X - ˙ Y = L F R h

Proof

Step Hyp Ref Expression
1 hdmap1val2.h H = LHyp K
2 hdmap1val2.u U = DVecH K W
3 hdmap1val2.v V = Base U
4 hdmap1val2.s - ˙ = - U
5 hdmap1val2.o 0 ˙ = 0 U
6 hdmap1val2.n N = LSpan U
7 hdmap1val2.c C = LCDual K W
8 hdmap1val2.d D = Base C
9 hdmap1val2.r R = - C
10 hdmap1val2.l L = LSpan C
11 hdmap1val2.m M = mapd K W
12 hdmap1val2.i I = HDMap1 K W
13 hdmap1val2.k φ K HL W H
14 hdmap1val2.x φ X V
15 hdmap1val2.f φ F D
16 hdmap1val2.y φ Y V 0 ˙
17 eqid 0 C = 0 C
18 16 eldifad φ Y V
19 1 2 3 4 5 6 7 8 9 17 10 11 12 13 14 15 18 hdmap1val φ I X F Y = if Y = 0 ˙ 0 C ι h D | M N Y = L h M N X - ˙ Y = L F R h
20 eldifsni Y V 0 ˙ Y 0 ˙
21 20 neneqd Y V 0 ˙ ¬ Y = 0 ˙
22 iffalse ¬ Y = 0 ˙ if Y = 0 ˙ 0 C ι h D | M N Y = L h M N X - ˙ Y = L F R h = ι h D | M N Y = L h M N X - ˙ Y = L F R h
23 16 21 22 3syl φ if Y = 0 ˙ 0 C ι h D | M N Y = L h M N X - ˙ Y = L F R h = ι h D | M N Y = L h M N X - ˙ Y = L F R h
24 19 23 eqtrd φ I X F Y = ι h D | M N Y = L h M N X - ˙ Y = L F R h