Metamath Proof Explorer


Theorem hdmap1eq

Description: The defining equation for h(x,x',y)=y' in part (2) in Baer p. 45 line 24. (Contributed by NM, 16-May-2015)

Ref Expression
Hypotheses hdmap1val2.h H = LHyp K
hdmap1val2.u U = DVecH K W
hdmap1val2.v V = Base U
hdmap1val2.s - ˙ = - U
hdmap1val2.o 0 ˙ = 0 U
hdmap1val2.n N = LSpan U
hdmap1val2.c C = LCDual K W
hdmap1val2.d D = Base C
hdmap1val2.r R = - C
hdmap1val2.l L = LSpan C
hdmap1val2.m M = mapd K W
hdmap1val2.i I = HDMap1 K W
hdmap1val2.k φ K HL W H
hdmap1eq.x φ X V 0 ˙
hdmap1eq.f φ F D
hdmap1eq.y φ Y V 0 ˙
hdmap1eq.g φ G D
hdmap1eq.e φ N X N Y
hdmap1eq.mn φ M N X = L F
Assertion hdmap1eq φ I X F Y = G M N Y = L G M N X - ˙ Y = L F R G

Proof

Step Hyp Ref Expression
1 hdmap1val2.h H = LHyp K
2 hdmap1val2.u U = DVecH K W
3 hdmap1val2.v V = Base U
4 hdmap1val2.s - ˙ = - U
5 hdmap1val2.o 0 ˙ = 0 U
6 hdmap1val2.n N = LSpan U
7 hdmap1val2.c C = LCDual K W
8 hdmap1val2.d D = Base C
9 hdmap1val2.r R = - C
10 hdmap1val2.l L = LSpan C
11 hdmap1val2.m M = mapd K W
12 hdmap1val2.i I = HDMap1 K W
13 hdmap1val2.k φ K HL W H
14 hdmap1eq.x φ X V 0 ˙
15 hdmap1eq.f φ F D
16 hdmap1eq.y φ Y V 0 ˙
17 hdmap1eq.g φ G D
18 hdmap1eq.e φ N X N Y
19 hdmap1eq.mn φ M N X = L F
20 14 eldifad φ X V
21 1 2 3 4 5 6 7 8 9 10 11 12 13 20 15 16 hdmap1val2 φ I X F Y = ι h D | M N Y = L h M N X - ˙ Y = L F R h
22 21 eqeq1d φ I X F Y = G ι h D | M N Y = L h M N X - ˙ Y = L F R h = G
23 1 11 2 3 4 5 6 7 8 9 10 13 14 16 15 18 19 mapdpg φ ∃! h D M N Y = L h M N X - ˙ Y = L F R h
24 nfv h φ
25 nfcvd φ _ h G
26 nfvd φ h M N Y = L G M N X - ˙ Y = L F R G
27 sneq h = G h = G
28 27 fveq2d h = G L h = L G
29 28 eqeq2d h = G M N Y = L h M N Y = L G
30 oveq2 h = G F R h = F R G
31 30 sneqd h = G F R h = F R G
32 31 fveq2d h = G L F R h = L F R G
33 32 eqeq2d h = G M N X - ˙ Y = L F R h M N X - ˙ Y = L F R G
34 29 33 anbi12d h = G M N Y = L h M N X - ˙ Y = L F R h M N Y = L G M N X - ˙ Y = L F R G
35 34 adantl φ h = G M N Y = L h M N X - ˙ Y = L F R h M N Y = L G M N X - ˙ Y = L F R G
36 24 25 26 17 35 riota2df φ ∃! h D M N Y = L h M N X - ˙ Y = L F R h M N Y = L G M N X - ˙ Y = L F R G ι h D | M N Y = L h M N X - ˙ Y = L F R h = G
37 23 36 mpdan φ M N Y = L G M N X - ˙ Y = L F R G ι h D | M N Y = L h M N X - ˙ Y = L F R h = G
38 22 37 bitr4d φ I X F Y = G M N Y = L G M N X - ˙ Y = L F R G